Volume 18:
Four Carbon—Heteroatom Bonds: $X\equiv C\equiv X$, $X\equiv C=\equiv X$, $X_2C=\equiv X$, $C\equiv X$

Preface .. V

Volume Editor’s Preface .. VII

Table of Contents .. XI

Introduction
J. G. Knight ... 1

18.1 Product Class 1: Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes
Y.-Q. Wu ... 17

18.2 Product Class 2: Carbon Dioxide, Carbonyl Sulfide, Carbon Disulfide, Isocyanates, Isothiocyanates, Carbodiimides, and Their Selenium, Tellurium, and Phosphorus Analogues
S. Braverman, M. Cherkinsky, and M. L. Birsa .. 65

18.3 Product Class 3: Carbonic Acid Halides
J.-P. G. Senet ... 321

18.4 Product Class 4: Acyclic and Cyclic Carbonic Acids and Esters, and Their Sulfur, Selenium, and Tellurium Analogues
K. W. Jung and A. S. Nagle .. 379

18.5 Product Class 5: Polymeric Carbonic Acids and Esters, and Their Sulfur Analogues
S. C. Moratti and Y. C. Charalambides .. 451

18.6 Product Class 6: Acyclic and Cyclic Carbamic Acids and Esters, and Their Sulfur, Selenium, Tellurium, and Phosphorus Analogues
L. Rossi ... 461

18.7 Product Class 7: Polymeric Carbamic Acids and Esters, and Their Sulfur Analogues
S. C. Moratti and Y. C. Charalambides .. 649

18.8 Product Class 8: Acyclic and Cyclic Ureas
G. Sartori and R. Maggi ... 665

18.9 Product Class 9: Polymeric Ureas and Their Phosphorus Analogues
G. Guichard .. 759
<table>
<thead>
<tr>
<th>Section</th>
<th>Product Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.10</td>
<td>10: Thiocarbonic Acids and Derivatives</td>
</tr>
<tr>
<td></td>
<td>S. Sato and N. Furukawa</td>
</tr>
<tr>
<td>18.11</td>
<td>11: Seleno- and Tellurocarbonic Acids and Derivatives</td>
</tr>
<tr>
<td></td>
<td>J. Schmidt and L. A. Silks</td>
</tr>
<tr>
<td>18.12</td>
<td>12: Imidic Acids and Derivatives, Isoxazoles and Derivatives, Sulfur and Selenium Equivalents, and Analogously Substituted Methylene phosphines</td>
</tr>
<tr>
<td></td>
<td>T. L. Gilchrist</td>
</tr>
<tr>
<td>18.13</td>
<td>13: Guanidine Derivatives</td>
</tr>
<tr>
<td></td>
<td>R. G. S. Berlinck, M. H. Kossuga, and A. M. Nascimento</td>
</tr>
<tr>
<td>18.14</td>
<td>14: Phosphorus Analogues of Guanidine</td>
</tr>
<tr>
<td></td>
<td>T. L. Gilchrist</td>
</tr>
<tr>
<td>18.15</td>
<td>15: Tetraheterosubstituted Methanes with a Carbon-Halogen Bond</td>
</tr>
<tr>
<td></td>
<td>A. Y. Il'chenko</td>
</tr>
<tr>
<td>18.16</td>
<td>16: Other Tetraheterosubstituted Methanes</td>
</tr>
<tr>
<td></td>
<td>C. M. Diaper</td>
</tr>
</tbody>
</table>

Keyword Index | 1283 |
Author Index | 1335 |
Abbreviations | 1399 |
Table of Contents

Introduction
J. G. Knight

Introduction .. 1

18.1 Product Class 1: Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes
Y.-Q. Wu

18.1 Product Class 1: Cyanogen Halides, Cyanates and Their Sulfur, Selenium, and Tellurium Analogues, Sulfinyl and Sulfonyl Cyanides, Cyanamides, and Phosphaalkynes .. 17

18.1.1 Product Subclass 1: Cyanogen Halides ... 17

18.1.1.1 Synthesis of Product Subclass 1 .. 17

18.1.1.1 Method 1: By Halogenation of Cyanides .. 17

18.1.1.2 Method 2: Cyanogen Fluoride by Pyrolysis of 2,4,6-Trifluoro-1,3,5-triazine 18

18.1.1.2 Applications of Product Subclass 1 in Organic Synthesis 19

18.1.1.2.1 Method 1: Cleavage of Carbon–Heteroatom Bonds ... 19

18.1.1.2.2 Method 2: Formation of Heterocyclic Rings .. 20

18.1.1.2.3 Method 3: As Cyanating Reagents ... 21

18.1.2 Product Subclass 2: Cyanates and Their Sulfur, Selenium, and Tellurium Analogues ... 22

18.1.2.1 Synthesis of Product Subclass 2 .. 22

18.1.2.1.1 Method 1: By Nucleophilic Reactions from Cyanate Salts 22

18.1.2.1.2 Method 2: By Cyanation .. 24

18.1.2.1.2.1 Variation 1: Of Alcohols, Phenols, and Related Compounds with Cyanogen Halides .. 24

18.1.2.1.2.2 Variation 2: Of Halogenated Precursors with Cyanides 25

18.1.2.1.2.3 Variation 3: Thiocyanates from Sodium Sulfinate or Sulfonyl Chlorides 26

18.1.2.1.3 Method 3: Thiocyanates and Selenocyanates from Trimethylsilyl Isothiocyanates and Isoselenocyanates 27

18.1.2.1.4 Method 4: Thiocyanates and Selenocyanates from Thiocyanogen and Selenocyanogen ... 28

18.1.2.2 Applications of Product Subclass 2 in Organic Synthesis 30

18.1.2.2.1 Method 1: Formation of Heterocyclic Compounds ... 30

18.1.2.2.2 Method 2: Cyanates and Thiocyanates as Cyanating Reagents 30

18.1.2.2.3 Method 3: Addition of Thiocyanates or Selenocyanates to Aldehydes and Alkene Double Bonds .. 31
18.1.3 Product Subclass 3: Sulfinyl and Sulfonyl Cyanides

18.1.3.1 Synthesis of Product Subclass 3

18.1.3.1.1 Method 1: By Oxidation of Thiocyanates

18.1.3.1.2 Method 2: By Cyanation of Sulfinate Salts and Sulfonyl Chlorides

18.1.3.2 Applications of Product Subclass 3 in Organic Synthesis

18.1.3.2.1 Method 1: Sulfonyl Cyanides as Cyanating Reagents

18.1.3.2.2 Method 2: Formation of Heterocyclic Compounds from Sulfonyl Cyanides

18.1.4 Product Subclass 4: Cyanamides and Their Derivatives

18.1.4.1 Synthesis of Product Subclass 4

18.1.4.1.1 Method 1: By Alkylation of Cyanamide

18.1.4.1.2 Method 2: By Cyanation of Amines

18.1.4.1.2.1 Variation 1: With Cyanogen Halides

18.1.4.1.2.2 Variation 2: With Other Cyanating Reagents

18.1.4.1.2.3 Variation 3: By Cyanation of Halo Amines with Cyanides

18.1.4.1.3 Method 3: By Elimination from Ureas and Thioureas

18.1.4.1.4 Method 4: By Rearrangement Reactions

18.1.4.1.4.1 Variation 1: From Amidoximes by a Modified Tiemann Rearrangement

18.1.4.1.4.2 Variation 2: From N,N-Disubstituted Formamides by a Curtius-like Rearrangement

18.1.4.1.4.3 Variation 3: By Palladium-Catalyzed Coupling of Isocyanides, Allyl Carbonate, and Trimethylsilyl Azide through a Curtius-like Rearrangement

18.1.4.1.5 Method 5: By Decomposition of Heterocyclic Compounds

18.1.4.1.6 Method 6: Palladium-Catalyzed Formation of N,N-Diallyl Cyanamides

18.1.4.1.7 Method 7: Lewis Acid Catalyzed Reactions of Carbonyl Groups with N,N'-Bis(trimethylsilyl)carbodiimide

18.1.4.2 Applications of Product Subclass 4 in Organic Synthesis

18.1.4.2.1 Method 1: Formation of Heterocyclic Compounds

18.1.4.2.2 Method 2: Nucleophilic and Electrophilic Additions of Cyanamides

18.1.4.2.3 Method 3: The Cyanamide Group as a Protected Amine Group

18.1.5 Product Subclass 5: Cyanophosphines and Cyanophosphonates and Their Derivatives

18.1.5.1 Synthesis of Product Subclass 5

18.1.5.1.1 Method 1: By Cyanation

18.1.5.1.1.1 Variation 1: Of Phosphines and Phosphites with Cyanogen Halides

18.1.5.1.1.2 Variation 2: Of Halophosphorus Precursors with Cyanides

18.1.5.1.1.3 Variation 3: Of Halophosphorus Precursors with Trimethylsilyl Cyanide

18.1.5.1.1.4 Variation 4: Of Pyrophosphites with Alkyl Thiocyanates

18.1.5.2 Applications of Product Subclass 5 in Organic Synthesis

18.1.5.2.1 Method 1: Diethyl Cyanophosphonate as a Coupling Reagent in Acylation Reactions

18.1.5.2.1.1 Variation 1: Formation of Amides, Esters, and Thioesters
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1.5.2.1.2</td>
<td>Variation 2: C-Acylation of Active Methylene Compounds</td>
</tr>
<tr>
<td>18.1.5.2.2</td>
<td>Method 2: Phosphorylation of Phenols</td>
</tr>
<tr>
<td>18.1.5.2.3</td>
<td>Method 3: Cyanation By Diethyl Cyanophosphonate</td>
</tr>
<tr>
<td>18.1.6</td>
<td>Product Subclass 6: Heterosubstituted Phosphaalkynes</td>
</tr>
<tr>
<td>18.1.6.1</td>
<td>Synthesis of Product Subclass 6</td>
</tr>
<tr>
<td>18.1.6.1.1</td>
<td>Method 1: By Elimination</td>
</tr>
<tr>
<td>18.1.6.1.1.1</td>
<td>Variation 1: α-Halide Elimination from a Phosphaalkene</td>
</tr>
<tr>
<td>18.1.6.1.1.2</td>
<td>Variation 2: α,β-Elimination from Alkylphosphines</td>
</tr>
<tr>
<td>18.1.6.2</td>
<td>Applications of Product Subclass 6 in Organic Synthesis</td>
</tr>
<tr>
<td>18.1.6.2.1</td>
<td>Method 1: Formation of Phosphorus-Containing Heterocycles by Cycloaddition</td>
</tr>
<tr>
<td>18.2</td>
<td>Product Class 2: Carbon Dioxide, Carbonyl Sulfide, Carbon Disulfide, Isocyanates, Isothiocyanates, Carbodiimides, and Their Selenium, Tellurium, and Phosphorus Analogues</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Product Subclass 1: Carbon Dioxide</td>
</tr>
<tr>
<td>18.2.1.1</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
</tr>
<tr>
<td>18.2.1.1.1</td>
<td>Method 1: Supercritical Carbon Dioxide as a Reaction Medium for Chemical Syntheses</td>
</tr>
<tr>
<td>18.2.1.1.2</td>
<td>Method 2: Reduction of Carbon Dioxide</td>
</tr>
<tr>
<td>18.2.1.1.3</td>
<td>Method 3: Reactions with Oxygen Nucleophiles</td>
</tr>
<tr>
<td>18.2.1.1.3.1</td>
<td>Variation 1: Synthesis of Organic Carbonates</td>
</tr>
<tr>
<td>18.2.1.1.3.2</td>
<td>Variation 2: Synthesis of Polycarbonates</td>
</tr>
<tr>
<td>18.2.1.1.4</td>
<td>Method 4: Reactions with Nitrogen Nucleophiles</td>
</tr>
<tr>
<td>18.2.1.1.4.1</td>
<td>Variation 1: Synthesis of Carbamic Acid Derivatives</td>
</tr>
<tr>
<td>18.2.1.1.4.2</td>
<td>Variation 2: Synthesis of Urea Derivatives</td>
</tr>
<tr>
<td>18.2.1.1.4.3</td>
<td>Variation 3: Synthesis of Isocyanates</td>
</tr>
<tr>
<td>18.2.1.1.4.4</td>
<td>Variation 4: Synthesis of Heterocycles</td>
</tr>
<tr>
<td>18.2.1.1.5</td>
<td>Method 5: Reactions with Carbon Nucleophiles</td>
</tr>
<tr>
<td>18.2.1.1.5.1</td>
<td>Variation 1: Carboxylation of Organometallic Derivatives</td>
</tr>
<tr>
<td>18.2.1.1.5.2</td>
<td>Variation 2: Carboxylation of Other Carbanions</td>
</tr>
<tr>
<td>18.2.1.1.6</td>
<td>Method 6: Carbon Dioxide as Protecting and Activating Group</td>
</tr>
<tr>
<td>18.2.1.1.7</td>
<td>Method 7: Reaction of Carbon Dioxide with Butadiene</td>
</tr>
<tr>
<td>18.2.1.1.8</td>
<td>Method 8: Carbon Dioxide in Aza-Wittig-Type Reactions</td>
</tr>
<tr>
<td>18.2.1.1.9</td>
<td>Methods 9: Additional Applications</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Product Subclass 2: Carbonyl Sulfide</td>
</tr>
<tr>
<td>18.2.2.1</td>
<td>Synthesis of Product Subclass 2</td>
</tr>
<tr>
<td>18.2.2.1.1</td>
<td>Method 1: Via Thiocyanates</td>
</tr>
</tbody>
</table>
18.2.2.2 Applications of Product Subclass 2 in Organic Synthesis 77
18.2.2.2.1 Method 1: Synthesis of Thiocarbonates .. 77
18.2.2.2.2 Method 2: Synthesis of Thiocarbamates .. 77
18.2.2.2.3 Method 3: Synthesis of Thiocarboxylic Acids and Derivatives 78
18.2.2.2.4 Methods 4: Additional Applications .. 79
18.2.3 Product Subclass 3: Carbonyl Selenide ... 79
18.2.3.1 Synthesis of Product Subclass 3 .. 80
18.2.3.1.1 Method 1: Acidification of Tetrahydrofuran Solutions of Ammonium Selenocarbamates .. 80
18.2.3.2 Applications of Product Subclass 3 in Organic Synthesis 80
18.2.3.2.1 Method 1: Synthesis of Carbonates and Their Acyclic and Cyclic Derivatives .. 80
18.2.3.2.2 Method 2: Synthesis of Ureas and Their Acyclic and Cyclic Derivatives 81
18.2.3.2.3 Method 3: Synthesis of Selenol Esters ... 82
18.2.3.2.4 Method 4: Synthesis of Selenoamides ... 82
18.2.3.2.5 Method 5: Synthesis of 2H-1-Benzopyran-2-one Derivatives 83
18.2.3.2.6 Method 6: Carbonyl Selenide as a Reducing Agent 83
18.2.4 Product Subclass 4: Isocyanates ... 83
18.2.4.1 Synthesis of Product Subclass 4 .. 84
18.2.4.1.1 Method 1: Carbonylation of Primary Amines with Phosgene 84
18.2.4.1.2 Method 2: Carbonylation of Amines with Carbon Dioxide 88
18.2.4.1.2.1 Variation 1: Isocyanates from Primary Amines and Carbon Dioxide; Dehydration of Carbamate Anions .. 89
18.2.4.1.2.2 Variation 2: Isocyanates from Primary Amines and Carbon Dioxide Using Mitsunobu Chemistry .. 90
18.2.4.1.3 Method 3: Carbonylation of Primary Amines with Other Carbonyl Transfer Agents .. 91
18.2.4.1.3.1 Variation 1: Carbonylation by Bis(trichloromethyl) Carbonate 91
18.2.4.1.3.2 Variation 2: Carbonylation by Di-tert-butyl Dicarbonate 92
18.2.4.1.3.3 Variation 3: Carbonylation by Trichloromethyl Chloroformate 94
18.2.4.1.3.4 Variation 4: Carbonylation by 1,1'-Carbonyldiimidazole 96
18.2.4.1.3.5 Variation 5: Carbonylation by Oxalyl Chloride 96
18.2.4.1.4 Method 4: Carbonylation of Amine Derivatives 98
18.2.4.1.4.1 Variation 1: Carbonylation of Iminophosphoranes 98
18.2.4.1.4.2 Variation 2: Carbonylation of N-Silylamines 99
18.2.4.1.4.3 Variation 3: Carbonylation of Ureas ... 101
18.2.4.1.4.4 Variation 4: Carbonylation of Sulfonamides 103
18.2.4.1.4.5 Variation 5: Carbonylation of Imino Compounds 104
18.2.4.1.4.6 Variation 6: Carbonylation of N-Sulfinylamines 105
18.2.4.1.5 Method 5: Reductive Carbonylation of Nitro Aromatic Compounds 106
18.2.4.1.6 Method 6: From Organic Halides and Sulfates 107
18.2.4.1.6.1 Variation 1: By the Reaction of Organic Halides with Cyanate Anion 108
18.2.4.1.6.2 Variation 2: By Reaction with Metal Nitrocyranamides ... 109
18.2.4.1.7 Method 7: From Carbamates .. 110
18.2.4.1.7.1 Variation 1: Thermal Decomposition of Carbamates .. 110
18.2.4.1.7.2 Variation 2: Silane-Induced Cleavage of Carbamates 111
18.2.4.1.7.3 Variation 3: Cleavage of Carbamates with Boron Derivatives 113
18.2.4.1.7.4 Variations 4: Additional Variations ... 114
18.2.4.1.8 Method 8: From Thiocarbamates .. 115
18.2.4.1.8.1 Variation 1: From S-Alkyl Thiocarbamates .. 115
18.2.4.1.8.2 Variation 2: From O-Alkyl Thiocarbamates 117
18.2.4.1.9 Method 9: Thermolysis of Ureas .. 117
18.2.4.1.10 Method 10: By Cleavage of Nitrogen Heterocycles 118
18.2.4.1.10.1 Variation 1: From Three-Membered Nitrogen Heterocycles 118
18.2.4.1.10.2 Variation 2: From Four-Membered Nitrogen Heterocycles 119
18.2.4.1.10.3 Variation 3: From Five-Membered Nitrogen Heterocycles 120
18.2.4.1.11 Method 11: From N-Substituted Trihaloacetamides 122
18.2.4.1.12 Method 12: By the Addition of Isocyanic Acid and Its Derivatives to Alkenes .. 122
18.2.4.1.12.1 Variation 1: Addition of Isocyanic Acid .. 122
18.2.4.1.12.2 Variation 2: Addition of Iodine Isocyanate 123
18.2.4.1.13 Method 13: Curtius Rearrangement .. 124
18.2.4.1.13.1 Variation 1: Using Sodium Azide .. 124
18.2.4.1.13.2 Variation 2: Using Trimethylsilyl Azide .. 125
18.2.4.1.13.3 Variation 3: Using Diphenyl Azidophosphate 130
18.2.4.1.14 Method 14: Hofmann Rearrangement ... 131
18.2.4.1.15 Method 15: Lossen Rearrangement .. 132
18.2.4.1.16 Method 16: From Aminimides .. 133
18.2.4.1.17 Method 17: Sigmatropic Rearrangements ... 135
18.2.4.1.18 Method 18: By Oxidation ... 138
18.2.4.1.19 Method 19: Via Isomerization of Nitrile Oxides 140
18.2.4.1.20 Method 20: Preparation of Functionalized Isocyanates from Other Isocyanates .. 141
18.2.4.1.20.1 Variation 1: By Substitution Reactions ... 141
18.2.4.1.20.2 Variation 2: By Addition to a Double Bond 144
18.2.4.1.20.3 Variation 3: Trimethylsilyl Isocyanate in the Synthesis of Isocyanates 144
18.2.4.1.20.4 Variation 4: Chlorocarbonyl Isocyanate .. 146
18.2.4.1.20.5 Variation 5: Sulfonyl Isocyanates .. 147
18.2.4.2 Applications of Product Subclass 4 in Organic Synthesis 148
18.2.4.2.1 Method 1: Nucleophilic Additions .. 149
18.2.4.2.1.1 Variation 1: Reactions with Heteroatom Nucleophiles 149
18.2.4.2.1.2 Variation 2: Reactions with Carbon Nucleophiles 150
18.2.4.2.2 Method 2: Cycloaddition Reactions .. 154
18.2.4.2.2.1 Variation 1: [2 + 2]-Cycloaddition Reactions 154
18.2.4.2.2.2 Variation 2: [2 + 4]-Cycloaddition Reactions 156
18.2.4.2.2.3 Variation 3: [2 + 3]-Cycloaddition Reactions 158
18.2.4.2.2.4 Variation 4: Cyclodimerization and Cyclotrimerization of Isocyanates 160
18.2.4.2.3 Method 3: Reactions of Isocyanates with Iminophosphoranes 161
18.2.4.2.4 Method 4: Friedel–Crafts Reactions of Isocyanates 162
18.2.5 Product Subclass 5: 1-Oxa-3-phosphapropadienes and 1-Phospha-3-thiapropadienes ... 164
18.2.5.1 Synthesis of Product Subclass 5 ... 164
18.2.5.1.1 Method 1: Phosgenation and Thiophosgenation of Disilylated Phosphines 164
18.2.5.2 Applications of Product Subclass 5 in Organic Synthesis 166
18.2.5.2.1 Method 1: Synthesis of 1-Phosphapropadiene by a Wittig-Type Reaction 167
18.2.5.2.2 Method 2: Synthesis of Polyphosphadienes 167
18.2.5.2.3 Method 3: Photochemical and Metal-Catalyzed Decarbonylation of 1-Oxa-3-phosphapropadiene .. 168
18.2.6 Product Subclass 6: Carbon Disulfide .. 169
18.2.6.1 Applications of Product Subclass 6 in Organic Synthesis 170
18.2.6.1.1 Method 1: Reactions with Oxygen Nucleophiles 170
18.2.6.1.1.1 Variation 1: Synthesis of Orthocarbonic Acid Derivatives 170
18.2.6.1.1.2 Variation 2: Synthesis of Dithiocarbonates 170
18.2.6.1.1.3 Variations 3: Additional Variations 171
18.2.6.1.2 Method 2: Reactions with Sulfur Nucleophiles 172
18.2.6.1.2.1 Variation 1: Synthesis of Trithiocarbonates 172
18.2.6.1.2.2 Variation 2: Synthesis of Tetrathiomalonic Acid Derivatives 173
18.2.6.1.3 Method 3: Reactions with Nitrogen Nucleophiles 174
18.2.6.1.3.1 Variation 1: Synthesis of Dithiocarbamates 174
18.2.6.1.3.2 Variation 2: Synthesis of Thioureas 175
18.2.6.1.3.3 Variation 3: Synthesis of Isothiocyanates 176
18.2.6.1.3.4 Variation 4: Synthesis of Heterocycles via Amine Derivatives Bearing an Additional Nucleophilic Group 177
18.2.6.1.4 Method 4: Reactions with Carbon Nucleophiles 177
18.2.6.1.4.1 Variation 1: Synthesis of Thiocarboxylic Acid Derivatives 177
18.2.6.1.4.2 Variation 2: Synthesis of Dithiocarboxylic Acid Derivatives 178
18.2.6.1.4.3 Variation 3: Synthesis of Ketene Dithioacetals 179
18.2.6.1.4.4 Variation 4: Synthesis of Thiocarbamates 181
18.2.6.1.4.5 Variation 5: Synthesis of Thioamides 182
18.2.6.1.5 Method 5: Reactions with Organosilicon Compounds 183
18.2.6.1.6 Method 6: Carbon Disulfide in Cycloaddition Reactions 183
18.2.6.1.7 Method 7: Carbon Disulfide in Aza-Wittig-Type Reactions 185
18.2.6.1.8 Method 8: Carbon Disulfide as a Protecting Group 186
18.2.6.1.9 Method 9: Carbon Disulfide as a Reducing Agent 186
18.2.6.1.10 Methods 10: Additional Applications 187
18.2.7 Product Subclass 7: Carbon Sulfide Selenide 187
18.2.7.1 Synthesis of Product Subclass 7 ... 187
18.2.7.1.1 Method 1: Via N,N-Dimethylselenothiocarbamates 187
18.2.8 Product Subclass 8: Isothiocyanates 188
18.2.8.1 Synthesis of Product Subclass 8 ... 189
18.2.1 Method 1: By Thiocarbonylation of Primary Amines with Thiophosgene 189

18.2.1.1 Variation 1: In Biphasic Systems .. 189
18.2.1.2 Variation 2: In Organic Solvents ... 190

18.2.1.2 Method 2: By Thiocarbonylation of Primary Amines with Carbon Disulfide via Cleavage of Dithiocarbamate Salts or Esters 191

18.2.1.2.1 Variation 1: Cleavage with Heavy Metal Salts 191
18.2.1.2.2 Variation 2: Cleavage under Oxidative Conditions 192
18.2.1.2.3 Variation 3: Cleavage by Phosphorus Derivatives 193
18.2.1.2.4 Variation 4: Cleavage by Alkyl Chloroformates 195
18.2.1.2.5 Variation 5: Cleavage with Carbodiimides 196
18.2.1.2.6 Variation 6: Cleavage of Alkyl Esters of Dithiocarbamates 198
18.2.1.2.7 Variation 7: Additional Variations 199

18.2.1.3 Method 3: Thiocarbonylation of Primary Amines with Other Thiocarbonyl Transfer Agents 200

18.2.1.4 Method 4: Thiocarbonylation of Amine Derivatives 201

18.2.1.4.1 Variation 1: Thiocarbonylation of Amide Anions 202
18.2.1.4.2 Variation 2: Thiocarbonylation of Iminophosphoranes 203

18.2.1.5 Method 5: By Nucleophilic Substitution of Organic Halides with Thiocyanate Anion 204

18.2.1.5.1 Variation 1: Alkyl and Aryl Isothiocyanates 205
18.2.1.5.2 Variation 2: Acyl, Thioacyl, and Imidoyl Thiocyanates 208
18.2.1.5.3 Variation 3: Sugar Isothiocyanates 210
18.2.1.5.4 Variation 4: Alkyl and Allenyl Isothiocyanates 211
18.2.1.5.5 Variation 5: Solid-Phase Synthesis 213
18.2.1.5.6 Variation 6: Silyl Isothiocyanates 214
18.2.1.6 Method 6: By the Addition of Thiocyanic Acid and Its Derivatives to Alkenes and Alkynes 215

18.2.1.6.1 Variation 1: Addition of Thiocyanic Acid and Its Derivatives to Alkenes 215
18.2.1.6.2 Variation 2: Addition of Iodine Thiocyanate and Selenyl Thiocyanates to Alkenes 217

18.2.1.6.3 Variation 3: Addition of Thiocyanic Acid and Its Derivatives to Alkynes ... 218

18.2.1.7 Method 7: By Cleavage of Nitrogen and Sulfur Containing Heterocycles 219

18.2.1.8 Method 8: By Cleavage of Nitrogen-Containing Heterocycles 222
18.2.1.9 Method 9: By Direct Sulfurization of Isocyanides 224
18.2.1.10 Method 10: Isothiocyanates from Aldehydes and Ketones 225

18.2.1.11 Method 11: Preparation of Functionalized Isothiocyanates from Other Isothiocyanates ... 226

18.2.1.11.1 Variation 1: Isothiocyanates by Substitution Reactions of Isothiocyanates 226
18.2.1.11.2 Variation 2: Alkenyl Isothiocyanates by Elimination Reactions of Isothiocyanates ... 228

18.2.1.12 Method 3: Addition Reactions of Alkenyl Isothiocyanates 229

18.2.1.12 Methods 12: Additional Methods 230

18.2.1.12.1 Method 1: Nucleophilic Additions 232
18.2.1.12.2 Method 1: Reactions with Heteroatom Nucleophiles 232
18.2.1.12.2 Method 2: Reactions with Carbon Nucleophiles 232

18.2.2 Applications of Product Subclass 8 in Organic Synthesis 232

18.2.2.1 Method 1: Nucleophilic Additions 232
18.2.2.1.1 Variation 1: Reactions with Heteroatom Nucleophiles 232
18.2.2.1.2 Variation 2: Reactions with Carbon Nucleophiles 232
18.2.8.2.2 Method 2: Cycloaddition Reactions ... 235
18.2.8.2.2.1 Variation 1: [2 + 2]-Cycloaddition Reactions 235
18.2.8.2.2.2 Variation 2: [2 + 4]-Cycloaddition Reactions 236
18.2.8.2.2.3 Variation 3: [2 + 3]-Cycloaddition Reactions 238
18.2.8.2.3 Method 3: Synthesis of Carbodiimides by Reaction with
Iminophosphoranes ... 239
18.2.8.2.4 Method 4: Synthesis of Thioamides by Friedel–Crafts Reaction 240
18.2.8.2.5 Method 5: Reduction of Isothiocyanates 242

18.2.9 Product Subclass 9: Carbon Diselenide ... 243
18.2.9.1 Synthesis of Product Subclass 9 ... 243
18.2.9.1.1 Method 1: Reaction of Selenium with Dichloromethane 243
18.2.9.2 Applications of Product Subclass 9 in Organic Synthesis 244
18.2.9.2.1 Method 1: Synthesis of Diselenocarbonates 244
18.2.9.2.2 Method 2: Synthesis of Triselenocarbonates 244
18.2.9.2.3 Method 3: Synthesis of Diselenocarbamates 245
18.2.9.2.4 Method 4: Synthesis of Isoselenocyanates 245
18.2.9.2.5 Method 5: Synthesis of Selenoureas 246
18.2.9.2.6 Method 6: Synthesis of Ketene Diselenocacetals 246
18.2.9.2.7 Method 7: Cycloaddition Reactions Involving Carbon Diselenide ... 246
18.2.9.2.8 Method 8: Polymerization of Carbon Diselenide 247
18.2.9.2.9 Methods 9: Additional Applications 247

18.2.10 Product Subclass 10: Isoselenocyanates 248
18.2.10.1 Synthesis of Product Subclass 10 ... 249
18.2.10.1.1 Method 1: By Nucleophilic Substitution of Organic Halides with
Selenocyanate Anion .. 249
18.2.10.1.1.1 Variation 1: Alkyl Isoselenocyanates 249
18.2.10.1.1.2 Variation 2: Acyl and Imidoyl Isoselenocyanates 250
18.2.10.1.1.3 Variation 3: Isoselenocyanates by Isomerization of Selenocyanates 251
18.2.10.1.1.4 Variation 4: Silyl Isoselenocyanates 252
18.2.10.1.2 Method 2: By Addition Reactions of Isocyanides with Elemental Selenium 252
18.2.10.1.2.1 Variation 1: Reaction of Preformed Isocyanides with Elemental Selenium 252
18.2.10.1.2.2 Variation 2: Via "In Situ" Formation of Isocyanides 253
18.2.10.1.3 Method 3: From Primary Amines and Carbon Diselenide via
Diselenocarbamates .. 254
18.2.10.1.4 Method 4: From Imidoyl Dihalides 255
18.2.10.1.5 Methods 5: Additional Methods 256
18.2.10.2 Applications of Product Subclass 10 in Organic Synthesis 257
18.2.10.2.1 Method 1: Reactions with Nucleophiles 257
18.2.10.2.1.1 Variation 1: Reactions with Heteroatom Nucleophiles 257
18.2.10.2.1.2 Variation 2: Reactions with Carbon Nucleophiles 258
18.2.10.2.2 Method 2: Cycloaddition Reactions of Isoselenocyanates 259

18.2.11 Product Subclass 11: Isotellurocyanates 261

18.2.12 Product Subclass 12: Carbodiimides .. 261
18.2.12.1 Synthesis of Product Subclass 12 .. 262
18.2.12.1.1 Method 1: Via Imidoyl Dihalides .. 262
18.2.12.1.2 Method 2: Via N,N'-Disubstituted Ureas, Thioureas, and Selenoureas 263
18.2.12.1.2.1 Variation 1: Using Phosphorus Reagents 263
18.2.12.1.2.2 Variation 2: Using Oxidative Reagents 264
18.2.12.1.2.3 Variation 3: Using Sulfonyl Chlorides 265
18.2.12.1.2.4 Variation 4: Using Acid Chlorides 265
18.2.12.1.2.5 Variation 5: Using Pyridine and Pyrimidine Derivatives 266
18.2.12.1.2.6 Variation 6: Using Bases and Organometallic Compounds 266
18.2.12.1.2.7 Variation 7: Using (Dichloromethylene)dimethylammonium Chloride 267
18.2.12.1.3 Method 3: Via Iminophosphoranes 268
18.2.12.1.3.1 Variation 1: Aza-Wittig-Type Reaction of Iminophosphoranes with Heterocumulenes ... 268
18.2.12.1.3.2 Variation 2: Synthesis Using Di-tert-butyl Dicarbonate 268
18.2.12.1.4 Method 4: Via Isocyanates ... 269
18.2.12.1.4.1 Variation 1: Reaction of Isocyanates with Phosphoramidates and Metal Organosilanolates ... 269
18.2.12.1.4.2 Variation 2: Catalytic Condensation of Isocyanates 270
18.2.12.1.5 Method 5: Via Isocyanides .. 270
18.2.12.1.6 Method 6: Via Rearrangements .. 271
18.2.12.1.6.1 Variation 1: Photochemical Rearrangement of Nitrilimines 271
18.2.12.1.6.2 Variation 2: Rearrangements of Azides 271
18.2.12.1.6.3 Variation 3: Tiemann Rearrangements of Amidoximes 272
18.2.12.1.7 Method 7: Synthesis of Organometallic Carbodiimides 273
18.2.12.1.7.1 Variation 1: Synthesis of Silylcarbodiimides 273
18.2.12.1.7.2 Variation 2: Synthesis of Germylcarbodiimides 273
18.2.12.1.7.3 Variation 3: Synthesis of Stannylcarbodiimides 274
18.2.12.1.8 Methods 8: Additional Methods .. 275
18.2.12.2 Applications of Product Subclass 12 in Organic Synthesis 275
18.2.12.2.1 Method 1: Reactions of Carbodiimides with Nucleophiles 275
18.2.12.2.2 Method 2: Carbodiimides in Cycloaddition Reactions 276
18.2.13 Product Subclass 13: 1-Aza-3-phosphapropadienes 277
18.2.13.1 Synthesis of Product Subclass 13 ... 278
18.2.13.1.1 Method 1: Hexaalkyldisiloxane Elimination from Phosphaurea Derivatives ... 278
18.2.13.1.2 Method 2: Peterson Alkenation Using Isocyanates 278
18.2.13.2 Applications of Product Subclass 13 in Organic Synthesis 279
18.2.13.2.1 Method 1: Hydrolysis of 1-Aza-3-phosphapropadienes 279
18.2.13.2.2 Method 2: 1-Aza-3-phosphapropadienes in Cycloaddition Reactions 280
18.2.14 Product Subclass 14: 1\(^{5}\),3\(^{5}\)-Diphosphapropadienes (Carbodiphosphoranes) .. 282
18.2.14.1 Synthesis of Product Subclass 14 .. 283
18.2.14.1.1 Method 1: Reaction of Phosphines with Carbon Tetrachloride 283
18.2.14.2 Method 2: Dehydrohalogenation of Phosphonium Salts 284
18.2.14.2 Applications of Product Subclass 14 in Organic Synthesis 286
18.2.15 Product Subclass 15: 1,3-Diphosphapropadienes 286
18.2.15.1 Synthesis of Product Subclass 15 286
18.2.15.1.1 Method 1: Trialkysilanolate Elimination from 1,3-Diphosphapropene 287
18.2.15.1.2 Method 2: Dehydrohalogenation of Halo-1,3-diphosphapropenes 287
18.2.15.1.3 Method 3: Dehalogenation of gem-Dihalodiphosphiranes 288
18.2.15.2 Applications of Product Subclass 15 in Organic Synthesis 289
18.2.15.2.1 Method 1: Synthesis of Sulfur-Containing Diphosphetanes and Diphospholanes ... 289
18.2.15.2.2 Methods 2: Additional Applications 290

18.3 Product Class 3: Carbonic Acid Halides
J.-P. G. Senet

18.3 Product Class 3: Carbonic Acid Halides ... 321
18.3.1 Product Subclass 1: Carbonic Dihalides 330
18.3.1.1 Synthesis of Product Subclass 1 ... 331
18.3.1.1.1 Method 1: By Halogen Exchange 331
18.3.1.1.2 Method 2: Through Decomposition of Perhalogenated Carbonates 332
18.3.2 Product Subclass 2: Haloformate Esters 334
18.3.2.1 Synthesis of Product Subclass 2 ... 334
18.3.2.1.1 Method 1: By Halogen Exchange 334
18.3.2.1.2 Variation 1: Chlorine–Fluorine Exchange 334
18.3.2.1.2 Variation 2: Chlorine–Bromine Exchange 335
18.3.2.1.2 Method 2: From α-C-Metalated Aldehydes and Ketones 336
18.3.2.1.3 Method 3: From Hydroxylic Compounds 339
18.3.2.1.3.1 Variation 1: By the Reaction of Carboxyl Difluoride 339
18.3.2.1.3.2 Variation 2: By the Reaction of Phosgene (Carbonic Dichloride) ... 340
18.3.2.1.3.3 Variation 3: By the Reaction of Bis(trichloromethyl) Carbonate 341
18.3.2.1.4 Method 4: From 1-Haloalkyl Carbonates by Elimination Reactions 343
18.3.2.1.5 Method 5: From Oxiranes by Phosgene Addition 344
18.3.2.1.6 Method 6: From Carboxyl Compounds by Addition Reactions 345
18.3.2.1.6.1 Variation 1: Reaction of Phosgene with Aldehydes 346
18.3.2.1.6.2 Variation 2: Reaction of Bis(trichloromethyl) Carbonate with Aldehydes ... 348
18.3.2.1.6.3 Variation 3: Zinc-Mediated Reaction of Phosgene with Carbonyl Compounds ... 349
18.3.2.1.7 Method 7: Synthesis with Retention of the Haloformic Acid Groups 351
18.3.2.1.7.1 Variation 1: By Radical Chlorination of Alkyl Chloroformate Esters 351
18.3.2.1.7.2 Variation 2: By Zinc-Induced Boord Elimination of Chlorine 353
18.3.2.1.7.3 Variation 3: Rearrangement of 1-Chloroprop-2-enyl Chloroformates 354
18.3.2.1.8 Method 8: From O,S-Disubstituted Thiocarbonates by Chlorination with Sulfuryl Chloride ... 354
18.3.3 **Product Subclass 3: Chlorothioformate S-Esters** ... 355
18.3.3.1 Synthesis of Product Subclass 3 ... 356
18.3.3.1.1 Method 1: By Catalytic Decomposition of Alkoxydichloromethylsulfanyl Chlorides .. 356
18.3.3.1.2 Method 2: From Sulfanyl Compounds .. 356
18.3.4 **Product Subclass 4: Haloselenoformic Se-Acids** ... 357
18.3.5 **Product Subclass 5: Carbamoyl Halides** ... 358
18.3.5.1 Synthesis of Product Subclass 5 ... 358
18.3.5.1.1 Method 1: By Halogen Exchange ... 358
18.3.5.1.2 Method 2: From N,N-Bis(C-substituted) Nitrogen Compounds 359
18.3.5.1.2.1 Variation 1: By the Reaction of Phosgene with Secondary Amines 359
18.3.5.1.2.2 Variation 2: By the Reaction of Bis(trichloromethyl) Carbonate with Secondary Amines .. 360
18.3.5.1.2.3 Variation 3: By the Reaction of Phosgene with Imines 361
18.3.5.1.2.4 Variation 4: By the Reaction of Phosgene with Formamidines 362
18.3.5.1.2.5 Variation 5: By the Reaction of Phosgene with N-Carbonyl Compounds 363
18.3.5.1.2.6 Variation 6: By the Reaction of Bis(trichloromethyl) Carbonate with N-Carbonyl Compounds ... 364
18.3.5.1.3 Method 3: By the Reaction of Phosgene with Hydroxylamines 365
18.3.5.1.4 Method 4: By N-Dealkylation of Tertiary Amines 366
18.3.5.1.5 Method 5: By Chlorination of N,N-Disubstituted Carbamic Acid Derivatives ... 368
18.3.5.1.5.1 Variation 1: From Carbamates Generated from Secondary Amines and Carbon Dioxide in the Presence of a Tertiary Amine Base 368
18.3.5.1.5.2 Variation 2: From N,N-Dialkylcarbamic Acid Silyl Esters Generated from N-Silyl Secondary Amines and Carbon Dioxide 369
18.3.5.1.5.3 Variation 3: From N,N-Dialkylcarbamic Acid Alkyl Esters 370
18.3.5.1.6 Method 6: From (Carbamoyl)palladium(II) Complexes Using Carbon Monoxide and Chlorine ... 370
18.3.5.1.7 Method 7: From 1-Haloalkyl Carbamates by Elimination Reactions 371
18.3.6 **Product Subclass 6: P-Halocarbonyl Organophosphorus Compounds** 372
18.3.6.1 Synthesis of Product Subclass 6 ... 372
18.3.6.1.1 Method 1: From Primary and Secondary Phosphines with Phosgene 372
18.3.6.1.2 Method 2: From Trialkyl Phosphites with Phosgene [or Bis(trichloromethyl) Carbonate] by the Arbuzov Reaction 373

18.4 **Product Class 4: Acyclic and Cyclic Carbonic Acids and Esters, and Their Sulfur, Selenium, and Tellurium Analogues**
K. W. Jung and A. S. Nagle

18.4.1 **Product Subclass 1: Carbonic Acid Monoesters** .. 380
18.4.1.1 Synthesis of Product Subclass 1 ... 380
18.4.2 Product Subclass 2: Organometallic Derivatives and Metal Salts of Carbonic Acid Monoesters

18.4.2.1 Synthesis of Product Subclass 2

18.4.2.1.1 Method 1: Addition of Metal Alkoxides to Carbon Dioxide

18.4.2.2 Applications of Product Subclass 2 in Organic Synthesis

18.4.2.2.1 Method 1: Carboxylations Using Magnesium Methyl Carbonate

18.4.3 Product Subclass 3: Acyclic Carbonate Diesters

18.4.3.1 Synthesis of Product Subclass 3

18.4.3.1.1 Method 1: Addition of Alcohols to Formate Derivatives

18.4.3.1.2 Variation 1: Addition of Aldehydes or Ketones

18.4.3.1.2 Variation 2: Synthesis Using Dialkyl Azodicarboxylates

18.4.3.1.2 Method 2: Transfer of the Carbonyl Group to Alcohols

18.4.3.1.2 Variation 1: Coupling Using 1,1'-Carbonyldiimidazole

18.4.3.1.2 Variation 2: Transcarbonylation Using Dimethyl or Diethyl Carbonate

18.4.3.1.3 Method 3: Addition to Carbon Dioxide

18.4.3.1.3 Variation 1: Synthesis Using Diethyl Azodicarboxylate

18.4.3.1.4 Method 4: Addition to Carbon Monoxide

18.4.3.1.5 Method 5: Alkylative Self-Condensation

18.4.3.1.6 Method 6: Coupling Using Urea as a Carbonyl Source

18.4.3.1.7 Method 7: Enzyme-Catalyzed Transcarbonylation

18.4.3.1.8 Method 8: Alkylative Self-Condensation

18.4.4 Product Subclass 4: Cyclic Carbonate Diesters

18.4.4.1 Synthesis of Product Subclass 4

18.4.4.1.1 Method 1: Transfer of the Carbonyl Group to Diols

18.4.4.1.1 Variation 1: Coupling Using 1,1'-Carbonyldiimidazole

18.4.4.1.1 Variation 2: Transcarbonylation Using Dimethyl or Diethyl Carbonate

18.4.4.1.2 Method 2: Addition to Carbon Dioxide

18.4.4.1.2 Variation 1: Reaction Using Halohydrins

18.4.4.1.2 Variation 2: Iodolactonization

18.4.4.1.2 Variation 3: Reaction Using Propargylic Alcohols

18.4.4.1.2 Variation 4: Reaction Using Oxiranes

18.4.4.1.3 Method 3: Addition to Carbon Monoxide

18.4.4.1.4 Method 4: Addition to Carbon Monoxide

18.4.4.2 Applications of Product Subclass 4 in Organic Synthesis

18.4.4.2.1 Method 1: Oxidation of Cyclic Carbonate Diesters to Unsaturated Analogues

18.4.5 Product Subclass 5: Bis(trihaloalkyl) Carbonates

18.4.5.1 Synthesis of Product Subclass 5

18.4.6 Product Subclass 6: Acyclic Carbonic Carboxylic Anhydrides

18.4.6.1 Synthesis of Product Subclass 6

18.4.6.1.1 Method 1: Addition of Acids to Formate Derivatives

18.4.6.1.2 Method 2: Addition of Carbonates to Acid Chlorides

18.4.7 Product Subclass 7: Cyclic Carbonic Carboxylic Anhydrides

18.4.7.1 Synthesis of Product Subclass 7
18.4.18.1.3 Method 3: Rearrangements ... 420
18.4.18.1.3.1 Variation 1: Isomerization of Thiocarbonate O,O-Diesters 421
18.4.19 Product Subclass 19: Thiocarbonate O,S-Diester S-Oxides and S,S-Dioxides 421
18.4.19.1 Synthesis of Product Subclass 19 ... 421
18.4.20 Product Subclass 20: Carboxylic Thiocarbonic Anhydride S-Esters 422
18.4.20.1 Synthesis of Product Subclass 20 ... 422
18.4.20.1.1 Method 1: Addition of Acids to Chlorothioformate S-Esters 422
18.4.20.1.2 Method 2: Addition of O-Metal Thiocarbonate S-Esters to Acid Chlorides 423
18.4.20.2 Applications of Product Subclass 20 in Organic Synthesis 423
18.4.20.2.1 Method 1: Macrolactonization of Hydroxy Acids 423
18.4.21 Product Subclass 21: Carbamic Thiocarbonic Anhydride S-Esters 424
18.4.21.1 Synthesis of Product Subclass 21 ... 424
18.4.22 Product Subclass 22: O-Amino Thiocarbonate S-Esters 424
18.4.22.1 Synthesis of Product Subclass 22 ... 424
18.4.23 Product Subclass 23: S-Acyl Thiocarbonate O-Esters 425
18.4.23.1 Synthesis of Product Subclass 23 ... 425
18.4.24 Product Subclass 24: Bis(alkoxycarbonyl) Sulides 425
18.4.24.1 Synthesis of Product Subclass 24 ... 425
18.4.25 Product Subclass 25: S-(Imidocarbonyl) Thiocarbonate O-Esters 426
18.4.25.1 Synthesis of Product Subclass 25 ... 426
18.4.26 Product Subclass 26: Alkoxycarbonyl Thio cyanates 426
18.4.26.1 Synthesis of Product Subclass 26 ... 426
18.4.27 Product Subclass 27: S-Halo Thiocarbonate O-Esters 427
18.4.27.1 Synthesis of Product Subclass 27 ... 427
18.4.27.1.1 Method 1: Addition of Alcohols to Thioformate Derivatives 427
18.4.27.1.2 Method 2: Halogenation of S-Acyl Thiocarbonate O-Esters 427
18.4.27.2 Applications of Product Subclass 27 in Organic Synthesis 428
18.4.27.2.1 Method 1: Nucleophilic Displacement of Thiol Derivatives 428
18.4.28 Product Subclass 28: S-Sulfanyl Derivatives of Thiocarbonate O-Esters ... 429
18.4.28.1 Synthesis of Product Subclass 28 ... 429
18.4.28.1.1 Method 1: Disulfides and Trisulfides by Addition to S-Substituted Chlorothioformates 429
18.4.28.1.2 Method 2: Addition of Sodium Thiosulfate to Chloroformates 430
18.4.28.1.3 Method 3: Oxidation of Alkoxycarbonyl Alkyl Disulfides 430
18.4.28.1.4 Method 4: Rearrangements ... 431
18.4.29 Product Subclass 29: S-Amino Thiocarbonate O-Esters 432
18.4.29.1 Synthesis of Product Subclass 29 ... 432
18.4.30 Product Subclass 30: Acyclic Dithiocarbonate S,S-Diesters 432
18.4.30.1 Synthesis of Product Subclass 30 .. 432
18.4.30.1.1 Method 1: Addition of Thiols to Chlorothioformate S-Esters 432
18.4.30.1.2 Method 2: Activation of O-Metal Thiocarbonate S-Esters 433
18.4.30.1.3 Method 3: Rearrangement of Dithiocarbonate O,S-Diesters 433
18.4.30.1.3.1 Variation 1: Isomerization Using Acids 434
18.4.30.1.3.2 Variation 2: Isomerization Using Bases 434
18.4.30.1.3.3 Variation 3: [3,3]-Sigmaotropic Rearrangement 434
18.4.31 Product Subclass 31: Cyclic Dithiocarbonate S,S-Diesters 435
18.4.31.1 Synthesis of Product Subclass 31 ... 435
18.4.31.1.1 Method 1: Addition of Dithiols/Dithiones to the Carbonyl Group 435
18.4.31.1.2 Method 2: Oxidation of Cyclic Trithiocarbonates 436
18.4.31.1.2.1 Variation 1: Conversion of Thiones into Carbonyl Compounds Using
Oxiranes .. 436
18.4.31.1.3 Method 3: Halocyclization of S-Allyl Dithiocarbonate O-Esters 436
18.4.31.1.4 Method 4: Acid-Catalyzed Cyclization of O-Alkyl S-(2-Oxoalkyl)
Dithiocarbonates ... 437
18.4.31.1.5 Method 5: Cycloaddition of Dithiocarbonate O,S-Diesters with Alkynes 438
18.4.31.1.6 Method 6: Isomerization of Dithiocarbonate O,S-Diesters 438
18.4.32 Product Subclass 32: Dithiocarbonate S,S-Diester S-Oxides 438
18.4.32.1 Synthesis of Product Subclass 32 ... 438
18.4.33 Product Subclass 33: S-Acyl Dithiocarbonate S-Esters 439
18.4.33.1 Synthesis of Product Subclass 33 ... 439
18.4.34 Product Subclass 34: S,S-Bis[(dialkylamino)thiocarbonyl]
Dithiocarbonates ... 439
18.4.34.1 Synthesis of Product Subclass 34 ... 439
18.4.35 Product Subclass 35: (Alkylsulfanyl)carbonyl Thiocyanates 440
18.4.35.1 Synthesis of Product Subclass 35 ... 440
18.4.36 Product Subclass 36: S-Sulfanyl Derivatives of Dithiocarbonate S-Esters .. 440
18.4.36.1 Synthesis of Product Subclass 36 ... 440
18.4.37 Product Subclass 37: Acyclic Selenocarbonate O,Se-Diesters 441
18.4.37.1 Synthesis of Product Subclass 37 ... 441
18.4.37.1.1 Method 1: Selenation of Tellurocarbonate O,Te-Diesters 441
18.4.37.1.2 Method 2: Addition of Selenols to Chloroformates 441
18.4.37.1.2.1 Variation 1: Reaction with (Arylselanyl)magnesium Bromides 442
18.4.37.1.2.2 Variation 2: Synthesis from Diselenides 442
18.4.37.1.2.3 Variation 3: Synthesis Using 1,1'-Carbonyldimidazole 442
18.4.37.1.3 Method 3: Palladium-Catalyzed Coupling of Selenides with
Chloroformates .. 443
18.4.37.2 Applications of Product Subclass 37 in Organic Synthesis 443
18.4.37.2.1 Method 1: Formation of γ- and δ-Lactones 443
18.4.38 Product Subclass 38: Cyclic Selenocarbonate O,Se-Diesters 444
18.4.38.1 Synthesis of Product Subclass 38 .. 444
18.4.39 Product Subclass 39: Bis(alkoxycarbonyl) Selenides 445
18.4.39.1 Synthesis of Product Subclass 39 .. 445
18.4.40 Product Subclass 40: Cyclic Selenothiocarbonate S,Se-Diesters 445
18.4.40.1 Synthesis of Product Subclass 40 .. 445
18.4.41 Product Subclass 41: Acyclic Diselenocarbonate Se,Se-Diesters 445
18.4.41.1 Synthesis of Product Subclass 41 .. 445
18.4.42 Product Subclass 42: Cyclic Diselenocarbonate Se,Se-Diesters 446
18.4.42.1 Synthesis of Product Subclass 42 .. 446
18.4.43 Product Subclass 43: Acyclic Tellurocarbonate O,Te-Diesters 446
18.4.43.1 Synthesis of Product Subclass 43 .. 446
18.4.44 Product Subclass 44: Bis(alkoxycarbonyl) Tellurides 446
18.4.44.1 Synthesis of Product Subclass 44 .. 446

18.5 Product Class 5: Polymeric Carbonic Acids and Esters, and Their Sulfur Analogues
S. C. Moratti and Y. C. Charalambides

18.5 Product Class 5: Polymeric Carbonic Acids and Esters, and Their Sulfur Analogues 451
18.5.1 Product Subclass 1: Polycarbonates ... 451
18.5.1.1 Synthesis of Product Subclass 1 ... 452
18.5.1.1.1 Method 1: Diol Addition to Carbonic Acid Derivatives 452
18.5.1.1.1.1 Variation 1: Condensation of Phosgene and Diphenols 452
18.5.1.1.1.2 Variation 2: Condensation of Diols with Diaryl and Dialkyl Carbonates 453
18.5.1.1.1.3 Variation 3: Direct Condensation of Diols with Carbon Dioxide 453
18.5.1.1.1.4 Variation 4: Copolymerization of Epoxides with Carbon Dioxide 454
18.5.1.1.2 Method 2: Ring-Opening Polymerization 455
18.5.1.1.2.1 Variation 1: Ring-Opening Polymerization of Cyclic Carbonates 455
18.5.1.1.2.2 Variation 2: Ring-Opening Polymerization of Cyclic Spiroorthocarbonates 456
18.5.1.1.3 Method 3: Coupling of Diphenols with Carbon Monoxide 456
18.5.1.2 Product Subclass 2: Polythiocarbonates 457
18.5.1.2.1 Synthesis of Product Subclass 2 .. 457
18.5.1.2.1.1 Method 1: Condensation of Phosgene with Dithiols 457
18.5.1.2.1.2 Method 2: Ring-Opening Polymerization 458
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.6</td>
<td>Product Class 6: Acyclic and Cyclic Carbamic Acids and Esters, and</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>Their Sulfur, Selenium, Tellurium, and Phosphorus Analogues</td>
<td></td>
</tr>
<tr>
<td>L. Rossi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.6.1</td>
<td>Product Subclass 1: Carbamic Acids and Derivatives</td>
<td>461</td>
</tr>
<tr>
<td>18.6.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>462</td>
</tr>
<tr>
<td>18.6.1.1.1</td>
<td>Method 1: Reaction of Amines with Carbon Dioxide</td>
<td>462</td>
</tr>
<tr>
<td>18.6.1.1.2</td>
<td>Synthesis of Metal Carbamates</td>
<td>462</td>
</tr>
<tr>
<td>18.6.1.2.1</td>
<td>Method 1: Reaction of Ammonium Carbamates with Alkali Metals</td>
<td>463</td>
</tr>
<tr>
<td>18.6.1.2</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>463</td>
</tr>
<tr>
<td>18.6.1.2.1</td>
<td>Method 1: Synthesis of Amides from Alkylammonium Carbamates</td>
<td>463</td>
</tr>
<tr>
<td>18.6.2</td>
<td>Product Subclass 2: Linear Carbamic Acid Esters</td>
<td>464</td>
</tr>
<tr>
<td>18.6.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>465</td>
</tr>
<tr>
<td>18.6.2.1.1</td>
<td>Method 1: Reaction with Alcohols Using Phosgene</td>
<td>466</td>
</tr>
<tr>
<td>18.6.2.1.2</td>
<td>Method 2: Reaction with Carbonates</td>
<td>468</td>
</tr>
<tr>
<td>18.6.2.1.2.1</td>
<td>Variation 1: With Organic Carbonates</td>
<td>468</td>
</tr>
<tr>
<td>18.6.2.1.2.2</td>
<td>Variation 2: With Alkyl and Aryl Isopropenyl and</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>α-Methoxyvinyl Carbonates</td>
<td></td>
</tr>
<tr>
<td>18.6.2.1.2.3</td>
<td>Variation 3: Other Noncatalyzed Reactions with Organic Carbonates</td>
<td>470</td>
</tr>
<tr>
<td>18.6.2.1.2.4</td>
<td>Variation 4: Reaction of Aromatic Amines with Organic Carbonates</td>
<td>472</td>
</tr>
<tr>
<td>18.6.2.1.2.5</td>
<td>Variation 5: Reaction with Inorganic Carbonates</td>
<td>474</td>
</tr>
<tr>
<td>18.6.2.1.2.6</td>
<td>Variation 6: Reaction with Ammonium Carbonates and</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>Ammonium Hydrogen Carbonates</td>
<td></td>
</tr>
<tr>
<td>18.6.2.1.2.7</td>
<td>Variation 7: Reaction with Organic Dicarbonates</td>
<td>476</td>
</tr>
<tr>
<td>18.6.2.1.2.8</td>
<td>Variation 8: Enzyme-Catalyzed Reactions with Organic Carbonates</td>
<td>478</td>
</tr>
<tr>
<td>18.6.2.1.2.9</td>
<td>Variation 9: Solid-Phase Reaction of Amines with Organic Carbonates</td>
<td>479</td>
</tr>
<tr>
<td>18.6.2.1.3</td>
<td>Method 3: Reaction with Haloformates</td>
<td>480</td>
</tr>
<tr>
<td>18.6.2.1.3.1</td>
<td>Variation 1: Reaction with In Situ Generated Haloformates</td>
<td>483</td>
</tr>
<tr>
<td>18.6.2.1.3.2</td>
<td>Variation 2: Reaction of Tertiary Amines with Haloformates</td>
<td>483</td>
</tr>
<tr>
<td>18.6.2.1.4</td>
<td>Method 4: Reaction with Carbon Dioxide</td>
<td>485</td>
</tr>
<tr>
<td>18.6.2.1.4.1</td>
<td>Variation 1: Base-Catalyzed Reaction with Carbon Dioxide</td>
<td>486</td>
</tr>
<tr>
<td>18.6.2.1.4.2</td>
<td>Variation 2: Base-Catalyzed Reaction with Carbon Dioxide on a Solid Phase</td>
<td>489</td>
</tr>
<tr>
<td>18.6.2.1.4.3</td>
<td>Variation 3: Metal-Catalyzed Reaction with Carbon Dioxide</td>
<td>489</td>
</tr>
<tr>
<td>18.6.2.1.4.4</td>
<td>Variation 4: Via Ammonium Carbamates by Reaction of Amines and</td>
<td>490</td>
</tr>
<tr>
<td></td>
<td>Carbon Dioxide</td>
<td></td>
</tr>
<tr>
<td>18.6.2.1.4.5</td>
<td>Variation 5: Reaction with Supercritical Carbon Dioxide</td>
<td>492</td>
</tr>
<tr>
<td>18.6.2.1.5</td>
<td>Method 5: Reaction with Carbonyl Sulfide</td>
<td>493</td>
</tr>
<tr>
<td>18.6.2.1.6</td>
<td>Method 6: Reaction with Ureas and Alcohols</td>
<td>494</td>
</tr>
<tr>
<td>18.6.2.1.7</td>
<td>Method 7: Metal-Catalyzed Carbonylation Using Carbon Monoxide</td>
<td>495</td>
</tr>
</tbody>
</table>
18.6.2.1.8 Method 8: Oxidative Alkoxycarbonylation of Amines 496
18.6.2.1.8.1 Variation 1: Homogeneous Oxidative Alkoxycarbonylation 496
18.6.2.1.8.2 Variation 2: Heterogeneous Oxidative Alkoxycarbonylation 497
18.6.2.1.8.3 Variation 3: Oxidative Alkoxycarbonylation of Tertiary Amines 500
18.6.2.1.9 Method 9: Reaction with Alkoxycarbonylazoles and Alkoxycarbonyltriazoles .. 500
18.6.2.1.9.1 Variation 1: Selective Reaction of 1,1'-Carbonyldiimidazole with Amines and Alcohols .. 502
18.6.2.1.10 Method 10: Reaction of Carbamoylimidazolium Salts with Phenols or Alcohols ... 503
18.6.2.1.2 Synthesis from Ureas ... 504
18.6.2.1.2.1 Method 1: Reaction with Alcohols 504
18.6.2.1.2.1.1 Variation 1: Metal-Catalyzed Reaction with Alcohols 505
18.6.2.1.2.1.2 Variation 2: Acid- and Base-Catalyzed Reaction with Alcohols 506
18.6.2.1.2.2 Method 2: Reaction with Carbon Monoxide 508
18.6.2.1.2.3 Method 3: Reaction with Organic Carbonates 509
18.6.2.1.2.4 Method 4: Reaction with Oxiranes 510
18.6.2.1.3 Synthesis from Cyanates and Isocyanates 511
18.6.2.1.3.1 Method 1: Reaction of Isocyanates with Alcohols 511
18.6.2.1.3.1.1 Variation 1: Synthesis of Unsubstituted Carbamates by Reaction of Trichloroacetyl Isocyanates with Alcohols 514
18.6.2.1.3.1.2 Variation 2: Reaction of Inorganic Cyanates with Alcohols 515
18.6.2.1.3.1.3 Variation 3: Reaction of Triethylammonium Isocyanate with Alcohols 515
18.6.2.1.3.1.4 Variation 4: Reaction of Inorganic Cyanates with Alcohols and Alkyl Halides ... 516
18.6.2.1.3.1.5 Variation 5: Reaction of Chlorosulfonyl Isocyanate with Allyl Ethers 518
18.6.2.1.4 Synthesis from Carbamoyl Halides ... 518
18.6.2.1.4.1 Method 1: Reaction with Alcohols and Derivatives 518
18.6.2.1.5 Synthesis from Azides ... 520
18.6.2.1.5.1 Method 1: Reaction with Organic Carbonates and Dicarbonates 520
18.6.2.1.5.1.1 Variation 1: Reductive Transformation of Azides to (tert-Butoxycarbonyl)carbamates .. 520
18.6.2.1.5.1.2 Variation 2: Modified Staudinger Reaction of Azides 521
18.6.2.1.5.2 Method 2: Reaction with Haloformates 522
18.6.2.1.6 Synthesis from Amides ... 523
18.6.2.1.6.1 Method 1: Reaction of Aromatic Amides with Organic Carbonates 523
18.6.2.1.6.2 Method 2: Hofmann Rearrangement of Carboxamides 524
18.6.2.1.6.2.1 Variation 1: Hofmann Rearrangement of Carboxamides Mediated by Bromonium Ion Equivalents 524
18.6.2.1.6.2.2 Variation 2: Hofmann Rearrangement of Carboxamides Mediated by Other Systems .. 526
18.6.2.1.6.2.3 Variation 3: Electrochemically Induced Hofmann Rearrangement of Carboxamides ... 528
18.6.2.1.7 Synthesis from Carbamates .. 529
 18.6.2.1.7.1 Method 1: By Transesterification 529
 18.6.2.1.7.1.1 Variation 1: Reaction with Alcohols 529
 18.6.2.1.7.1.2 Variation 2: Reaction via Silyl Carbamates 532
 18.6.2.1.7.1.3 Variation 3: Transesterification on a Solid Phase 533
 18.6.2.1.7.2 Method 2: By N-Alkylation 534
 18.6.2.1.7.2.1 Variation 1: Reaction with Alkyl Halides and Base 534
 18.6.2.1.7.2.2 Variation 2: Reaction with Amines 535
 18.6.2.1.7.2.3 Variation 3: Reaction with Alkenes 536
 18.6.2.1.7.2.4 Variation 4: Reaction with Aldehydes and Aromatic Compounds 537
 18.6.2.1.8 Synthesis by Other Methods 538
 18.6.2.1.8.1 Method 1: Curtius Rearrangement of Carboxylic Acids and Derivatives 538
 18.6.2.1.8.2 Method 2: Reductive Carbynlation of Aromatic Nitro Compounds 539
 18.6.2.1.8.2.1 Variation 1: Metal-Catalyzed Reductive Carbynlation of Aromatic Nitro Compounds .. 539
 18.6.2.1.8.2.2 Variation 2: Selenium-Catalyzed Carbynlation of Aromatic Nitro Compounds .. 543
 18.6.2.1.8.2.3 Variation 3: Palladium-Catalyzed Reductive Carbynlation of Nitrobenzene .. 544
 18.6.2.1.8.3 Method 3: Reaction of Cyanogen Chloride with Alcohols 545
 18.6.2.1.8.4 Method 4: Ene Reaction of Alkenes with Diethyl Azodicarboxylate 546
 18.6.2.1.8.5 Method 5: Carbamates from O-Alkyl and S-Alkyl Thiocarbamates 547
 18.6.2.2 Applications of Product Subclass 2 in Organic Synthesis 549
 18.6.2.2.1 Method 1: Synthesis of Isocyanates 549
 18.6.2.2.2 Method 2: Reaction of Carbamates with Carbonyl Compounds and Derivatives .. 550
 18.6.2.2.3 Method 3: Reaction of Amines from Carbamates 551
 18.6.2.2.4 Method 4: Reaction of Ureas from Carbamates 553
 18.6.2.2.4.1 Variation 1: Diiodosilane-Mediated Synthesis of Ureas from Carbamates 553
 18.6.3 Product Subclass 3: Cyclic Carbamates 554
 18.6.3.1 Synthesis of Product Subclass 3 555
 18.6.3.1.1 Synthesis from Amino Alcohols 555
 18.6.3.1.1.1 Method 1: Reaction with Phosgene, Trichloromethyl Chloroformate, and Bis(trichloromethyl) Carbonate 555
 18.6.3.1.1.2 Method 2: Reaction with Organic Carbonates 559
 18.6.3.1.1.2.1 Variation 1: Reaction with Alkylammonium Carbonates 560
 18.6.3.1.1.2.2 Variation 2: Reaction with Organic Dicarbonates 561
 18.6.3.1.1.2.3 Variation 3: Reaction with Polymer-Supported Carbonate 562
 18.6.3.1.1.3 Method 3: Reaction with Ureas 563
 18.6.3.1.1.4 Method 4: Reaction with Carbon Dioxide 563
 18.6.3.1.1.4.1 Variation 1: Electrochemical Reaction with Carbon Dioxide 564
 18.6.3.1.1.5 Method 5: Reaction with Carbon Monoxide 565
 18.6.3.1.1.6 Method 6: Reaction with Trihaloacetic Acid Derivatives 566
 18.6.3.1.1.7 Method 7: Reaction with Isocyanates 567
18.6.3.1.8 Method 8: Reaction with 1,1'-Carbonyldiimidazole 568
18.6.3.1.2 Synthesis from Cyclic Carbonates .. 569
18.6.3.1.2.1 Method 1: Reaction with Isocyanates 569
18.6.3.1.2.2 Method 2: Reaction with Aromatic Amines 570
18.6.3.1.2.3 Method 3: Reaction with Formamide and with Ammonium Carbonate and Potassium Cyanide 571
18.6.3.1.3 Synthesis from Oxiranes .. 571
18.6.3.1.3.1 Method 1: Reaction with Isocyanates 571
18.6.3.1.3.1.1 Variation 1: Reaction with 1,3,5-Triazinane-2,4,6-trione 573
18.6.3.1.3.1.2 Variation 2: Reaction with Isothiocyanates 574
18.6.3.1.3.2 Method 2: Reaction with Carbamates 575
18.6.3.1.3.3 Method 3: Reaction of 2-(Aminomethyl)oxiranes with Carbon Dioxide 575
18.6.3.1.4 Synthesis from Carbamates ... 576
18.6.3.1.4.1 Method 1: Cyclization of Carbamates 576
18.6.3.1.4.1.1 Variation 1: Pyrolytic Cyclization of Carbamates 576
18.6.3.1.4.1.2 Variation 2: Cyclization of Hydroxycarbamates and Derivatives 577
18.6.3.1.4.1.3 Variation 3: 4-Toluenesulfonyl Chloride Mediated Cyclization of N-tert-Butoxycarbonyl Derivatives of β-Amino Alcohols 578
18.6.3.1.4.1.4 Variation 4: Cyclization of N-Substituted β-Chloroethyl Carbamates 579
18.6.3.1.4.1.5 Variation 5: Cyclization via Silyl Carbamates 580
18.6.3.1.4.1.6 Variation 6: Cyclization of Unsaturated Carbamates 581
18.6.3.1.4.2 Method 2: Reaction with Alkenes 582
18.6.3.1.4.3 Method 3: Reaction with α-Halo Carbonyl Compounds 582
18.6.3.1.5 Synthesis from Unsaturated Compounds 583
18.6.3.1.5.1 Method 1: Reaction of Terminal Alkynyl Alcohols with Isocyanates 583
18.6.3.1.5.2 Method 2: Reaction of Terminal Alkynyl Alcohols with Amines and Carbon Dioxide 584
18.6.3.1.5.3 Method 3: Reaction of Unsaturated Amines with Carbon Dioxide 585
18.6.3.1.5.3.1 Variation 1: Reaction of Allylamines and Homoallylamines with Carbon Dioxide 585
18.6.3.1.5.3.2 Variation 2: Reaction of Propargylamines with Carbon Dioxide 586
18.6.3.1.6 Synthesis from Aziridines .. 587
18.6.3.1.6.1 Method 1: Reaction with Carbon Dioxide 587
18.6.3.1.6.2 Method 2: Reaction with Organic Dicarbonates 588
18.6.3.1.7 Synthesis by Other Methods ... 589
18.6.3.1.7.1 Method 1: One-Pot Synthesis of Oxazolidin-2-ones from Amino Acids 589
18.6.3.1.7.2 Method 2: Hofmann-Type Rearrangement of Hydroxy Amides 592
18.6.3.1.7.3 Method 3: Curtius Rearrangement of β-Hydroxy Acids 593
18.6.3.1.7.4 Method 4: Reaction of β-Aminoalkylsulfuric Acids with Inorganic Carbonates 593
18.6.3.1.7.5 Method 5: Synthesis of 1,3-Oxazetidin-2-ones 594
18.6.3.1.7.5.1 Variation 1: Reaction of Halo Ketones with Isocyanates 594
18.6.3.1.7.5.2 Variation 2: Hydrolysis of Halo Isocyanates 595
18.6.10.1.1 Method 1: Reaction of Alkylcarbamoyl Chlorides with Alkylithium Compounds and Elemental Tellurium 635
18.6.10.1.2 Method 2: Reduction of Bis(N,N-dimethylcarbamoyl) Ditellurides 635
18.6.10.2 Applications of Product Subclass 10 in Organic Synthesis 636
18.6.10.2.1 Method 1: Synthesis of Functionalized Amides 636
18.6.11 Product Subclass 11: Phosphinecarboxylates 637
18.6.11.1 Synthesis of Product Subclass 11 637
18.6.11.1.1 Method 1: Reaction of Arylphosphines with Alkyl Chloroformates 637
18.6.11.1.2 Method 2: Reaction of Alkali Metal Salts of Diphenylphosphines with Carbon Dioxide 637

18.7 Product Class 7: Polymeric Carbamic Acids and Esters, and Their Sulfur Analogues
S. C. Moratti and Y. C. Charalambides

18.7.1 Product Subclass 1: Polycarbamates (Polyurethanes) 650
18.7.1.1 Synthesis of Product Subclass 1 650
18.7.1.1.1 Method 1: Alcohol Addition to Isocyanates 650
18.7.1.1.2 Variation 1: From Alcohols and Nitrile Carbonates 651
18.7.1.1.2 Variation 2: From Alcohols and 1,3-Bis(4-isocyanatoaryl)-1,3-diazetidine-2,4-diones ... 652
18.7.1.1.3 Variation 3: From Latent Monomers 653
18.7.1.1.4 Variation 4: Through the Decomposition of Acyl Azides 653
18.7.1.1.5 Variation 5: Polymerization of Isocyanato Alcohols 654
18.7.1.1.6 Method 2: From Amines and Carbonate Derivatives 655
18.7.1.1.6 Variation 1: By Addition of Amines to Chloroformates 656
18.7.1.1.6 Variation 2: From Amines and Trichloroacetates 656
18.7.1.1.7 Method 3: From Alcohols and Carbamic Esters 657
18.7.1.1.8 Method 4: Condensation of Alkyl Halides with Cyanates and Diols 658
18.7.1.1.9 Method 5: From Aziridines and Carbon Dioxide 659
18.7.1.1.10 Method 6: From Iminocarbonates and Alcohols 659
18.7.1.1.11 Method 7: From Iminocarbonates and Acids 661
18.7.2 Product Subclass 2: Polythiocarbamates 661
18.7.2.1 Synthesis of Product Subclass 2 .. 662
18.7.2.1.1 Method 1: Addition of Thiols to Isocyanates 662
18.7.2.1.2 Method 2: From Bis(chlorothioformates) and Diamines 662
18.8 Product Class 8: Acyclic and Cyclic Ureas
G. Sartori and R. Maggi

18.8.1 Product Subclass 1: Unfunctionalized Ureas

18.8.1.1 Synthesis of Product Subclass 1

18.8.1.1.1 Method 1: From Phosgene

18.8.1.1.2 Method 2: From Ureas and Thioureas

18.8.1.1.2.1 Variation 1: From Cyclic Ureas by N-Alkylation

18.8.1.1.2.2 Variation 2: From N-(ω-Functionalized) Ureas

18.8.1.1.2.3 Variation 3: Transamination of Ureas

18.8.1.1.2.4 Variation 4: By Reaction with Bifunctional Compounds

18.8.1.1.2.5 Variation 5: Reductive N-Alkylation of Ureas

18.8.1.1.2.6 Variation 6: By Three-Component Reaction with Aldehydes and
β-Dicarbonyl Compounds (Biginelli Reaction)

18.8.1.1.2.7 Variation 7: Transformation of Thioureas

18.8.1.1.3 Method 3: From Isoureas by Isomerization

18.8.1.1.4 Method 4: From Isocyanates

18.8.1.1.4.1 Variation 1: By Reaction with Amines or Imines

18.8.1.1.4.2 Variation 2: By Reaction with Azirines and Aziridines

18.8.1.1.4.3 Variations 3: Miscellaneous Reactions

18.8.1.1.5 Method 5: From Carbon Dioxide

18.8.1.1.6 Method 6: From Carbon Monoxide

18.8.1.1.7 Method 7: From Alkyl Carbonates and Dithiocarbonates

18.8.1.1.7.1 Variation 1: Reaction of Amines with Dimethyl Carbonate,
Diethyl Carbonate, and Bis(4-nitrophenyl) Carbonate

18.8.1.1.7.2 Variation 2: Reaction of Amines with Di-tert-butyl Dicarbonate

18.8.1.1.7.3 Variation 3: Reaction of Amines with Bis(trichloromethyl) Carbonate
(Triphosgene)

18.8.1.1.7.4 Variation 4: Reaction of Amines with Dithiocarbonates

18.8.1.1.8 Method 8: From Carbamates or Thiocarbamates

18.8.1.1.8.1 Variation 1: By Reaction with Amines

18.8.1.1.8.2 Variation 2: By Reaction with Imines

18.8.1.1.8.3 Variations 3: Miscellaneous Reactions

18.8.1.1.9 Method 9: From o-Aminoarenecarboxylic Acid Derivatives

18.8.1.1.10 Methods 10: Miscellaneous Reactions

18.8.2 Product Subclass 2: N-Haloureas

18.8.2.1 Synthesis of Product Subclass 2

18.8.3 Product Subclass 3: N-Hydroxyureas

18.8.3.1 Synthesis of Product Subclass 3

18.8.3.1.1 Method 1: By Reaction of Phenyl (Phenoxy carbonyloxycarbamates with
Ammonia

18.8.3.1.2 Method 2: From Isocyanates and Hydroxylamine Derivatives
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.8.4</td>
<td>Product Subclass 4: N-Sulfanyl-, N-Sulfonyl-, N-Acyl-N'-sulfonyl-, and N,N'-Disulfonylureas</td>
<td>709</td>
</tr>
<tr>
<td>18.8.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>709</td>
</tr>
<tr>
<td>18.8.4.1.1</td>
<td>Method 1: From Carbamates</td>
<td>709</td>
</tr>
<tr>
<td>18.8.4.1.2</td>
<td>Method 2: From Isocyanates</td>
<td>710</td>
</tr>
<tr>
<td>18.8.4.1.3</td>
<td>Methods 3: Miscellaneous Reactions</td>
<td>712</td>
</tr>
<tr>
<td>18.8.5</td>
<td>Product Subclass 5: Carbamoyl Azides</td>
<td>713</td>
</tr>
<tr>
<td>18.8.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>713</td>
</tr>
<tr>
<td>18.8.6</td>
<td>Product Subclass 6: Carbamoylazo, Carbazone, and Carbodiazone Compounds</td>
<td>714</td>
</tr>
<tr>
<td>18.8.6.1</td>
<td>Synthesis of Product Subclass 6</td>
<td>714</td>
</tr>
<tr>
<td>18.8.7</td>
<td>Product Subclass 7: N-Nitroureas</td>
<td>715</td>
</tr>
<tr>
<td>18.8.7.1</td>
<td>Synthesis of Product Subclass 7</td>
<td>715</td>
</tr>
<tr>
<td>18.8.8</td>
<td>Product Subclass 8: Carbonohydrazides</td>
<td>716</td>
</tr>
<tr>
<td>18.8.8.1</td>
<td>Synthesis of Product Subclass 8</td>
<td>716</td>
</tr>
<tr>
<td>18.8.8.1.1</td>
<td>Method 1: From Carbamoylazo Compounds</td>
<td>716</td>
</tr>
<tr>
<td>18.8.8.1.2</td>
<td>Method 2: From Isocyanates</td>
<td>720</td>
</tr>
<tr>
<td>18.8.8.1.3</td>
<td>Methods 3: Miscellaneous Reactions</td>
<td>720</td>
</tr>
<tr>
<td>18.8.9</td>
<td>Product Subclass 9: N-Phosphorylureas</td>
<td>722</td>
</tr>
<tr>
<td>18.8.9.1</td>
<td>Synthesis of Product Subclass 9</td>
<td>722</td>
</tr>
<tr>
<td>18.8.10</td>
<td>Product Subclass 10: N-(Alkoxyalkyl)ureas</td>
<td>723</td>
</tr>
<tr>
<td>18.8.10.1</td>
<td>Synthesis of Product Subclass 10</td>
<td>723</td>
</tr>
<tr>
<td>18.8.11</td>
<td>Product Subclass 11: Biurets</td>
<td>723</td>
</tr>
<tr>
<td>18.8.11.1</td>
<td>Synthesis of Product Subclass 11</td>
<td>723</td>
</tr>
<tr>
<td>18.8.12</td>
<td>Product Subclass 12: Triurets</td>
<td>724</td>
</tr>
<tr>
<td>18.8.12.1</td>
<td>Synthesis of Product Subclass 12</td>
<td>724</td>
</tr>
<tr>
<td>18.8.13</td>
<td>Product Subclass 13: N-Acyl-, N,N-Diacyl-, and N,N'-Diacylureas</td>
<td>726</td>
</tr>
<tr>
<td>18.8.13.1</td>
<td>Synthesis of Product Subclass 13</td>
<td>726</td>
</tr>
<tr>
<td>18.8.13.1.1</td>
<td>Method 1: From Ureas</td>
<td>726</td>
</tr>
<tr>
<td>18.8.13.1.1.1</td>
<td>Variation 1: By Acylation with Carboxylic Acid Derivatives</td>
<td>726</td>
</tr>
<tr>
<td>18.8.13.1.1.2</td>
<td>Variation 2: Oxidation of Pyrrolidine- and Piperidine-1-carboxamides</td>
<td>728</td>
</tr>
<tr>
<td>18.8.13.1.2</td>
<td>Method 2: From Isocyanates</td>
<td>729</td>
</tr>
<tr>
<td>18.8.13.1.3</td>
<td>Methods 3: Miscellaneous Reactions</td>
<td>730</td>
</tr>
<tr>
<td>18.8.14</td>
<td>Product Subclass 14: N-Organooxythiocarbonyl Ureas</td>
<td>732</td>
</tr>
<tr>
<td>18.8.14.1</td>
<td>Synthesis of Product Subclass 14</td>
<td>732</td>
</tr>
<tr>
<td>18.8.15</td>
<td>Product Subclass 15: N-Cyanoureas</td>
<td>733</td>
</tr>
<tr>
<td>18.8.15.1</td>
<td>Synthesis of Product Subclass 15</td>
<td>733</td>
</tr>
</tbody>
</table>
18.8.16 Product Subclass 16: N-Carbamimidoylureas 734
18.8.16.1 Synthesis of Product Subclass 16 .. 734
18.8.17 Product Subclass 17: N-(Iminomethyl)ureas 735
18.8.17.1 Synthesis of Product Subclass 17 .. 735
18.8.18 Product Subclass 18: 1,2,4-Oxadiazolidin-3-ones, 1,2,4-Thiadiazolidin-
3-ones, 1,2,4-Triazolidinones, and 1,2,4-Triazolones 736
18.8.18.1 Synthesis of Product Subclass 18 .. 736
18.8.19 Product Subclass 19: 1,3,5-Oxadiazin-4-ones, 1,3,5-Thiadiazin-4-ones,
1,3,5-Triazin-2-ones, and 1,2,4-Triazin-3-ones 741
18.8.19.1 Synthesis of Product Subclass 19 .. 741
18.8.20 Product Subclass 20: 1,3,5-Oxadiazine-4,6-diones, 1,3,5-Thiadiazine-
4,6-diones, 1,3,5-Triazine-4,6-diones, 1,2,4-Triazine-3,5-diones, and
1,2,4-Triazine-3,6-diones .. 747
18.8.20.1 Synthesis of Product Subclass 20 .. 747
18.8.21 Product Subclass 21: Tetrazinones ... 751
18.8.21.1 Synthesis of Product Subclass 21 .. 751

18.9 Product Class 9: Polymeric Ureas and Their Phosphorus Analogues
G. Guichard

18.9 Product Class 9: Polymeric Ureas and Their Phosphorus Analogues 759
18.9.1 Product Subclass 1: Polysiocyanates (1-Nylons) 760
18.9.1.1 Synthesis of Product Subclass 1 ... 760
18.9.1.1.1 Method 1: By Anionic Polymerization of Monoisocyanates 760
18.9.1.1.1.1 Variation 1: Living Anionic Polymerization 764
18.9.1.1.2 Method 2: By Living Polymerization Using Organotitanium(IV) Catalysts 765
18.9.1.1.3 Method 3: By Anionic Cyclopolymerization of Diisocyanates and
Triisocyanates ... 767
18.9.1.1.3.1 Variation 1: Through Organotitanium(IV)-Catalyzed Cyclopolymerization of 1,2-Diisocyanates 769
18.9.2 Product Subclass 2: Polysiocyanurates 770
18.9.2.1 Synthesis of Product Subclass 2 ... 771
18.9.2.1.1 Method 1: Isocyanatoisocyanurates by Partial Trimerization of
Polysiocyanates .. 771
18.9.2.1.1.1 Variation 1: Poly(urethane isocyanurate) Foams from
Diisocyanates and Polyls .. 773
18.9.3 Product Subclass 3: Polyurylenes, Polysemicarbazides, and Polybiurets .. 774
18.9.3.1 Synthesis of Product Subclass 3 ... 774
18.9.3.1.1 Method 1: Polyurylenes: Reaction of Diisocyanates with Hydrazine 774
18.9.3.1.1 Variation 1: Reaction of a Diisocyanate or a Diisothiocyanate with Piperazine-1,4-diamine: Polysemicarbazides and Polythiosemicarbazides ... 774

18.9.3.1.2 Method 2: Polybiurets: Reaction of Diisocyanates with Primary Amines or O-Benzylhydroxylamine ... 775

18.9.3.1.2.1 Variation 1: Reaction of Polyisocyanates with Polyleylene Polyureas 776

18.9.4 Product Subclass 4: Poly[4(5)-iminoimidazolidine-2,5(4)-diones] and Poly(imidazolidine-2,4,5-triones) .. 777

18.9.4.1 Synthesis of Product Subclass 4 ... 777

18.9.4.1.1 Method 1: Poly(iminoimidazolidinediones) and Poly(imidazolidine-2,4,5-triones) from Diisocyanates and Hydrogen Cyanide 777

18.9.4.1.1.1 Variation 1: From Diisocyanates and Bis[(cyanocarbonyl)amino] Derivatives ... 780

18.9.4.1.2 Method 2: Poly(imidazolidine-2,4,5-triones) from Diisocyanates and (Arylenediimino)bis(oxoacetate) Diesters .. 781

18.9.4.1.3 Method 3: From Polycarbodiimides and Oxalyl Chloride 782

18.9.4.1.4 Method 4: From Polyureas and Oxalyl Chloride 783

18.9.5 Product Subclass 5: Polyydantoins and Poly(iminoimidazolidinones) 783

18.9.5.1 Synthesis of Product Subclass 5 ... 784

18.9.5.1.1 Method 1: From Diisocyanates and Bis(alkyl glycinates) 784

18.9.5.1.1.1 Variation 1: Poly(iminoimidazolidinones) from N,N’-Bis(1-cyanocycloalkyl) Diamines and Diisocyanates .. 786

18.9.5.1.2 Method 2: From Bishydantoins and Formaldehyde 787

18.9.6 Product Subclass 6: Polyhydouracils and Poly(quinazolinediones) 788

18.9.6.1 Synthesis of Product Subclass 6 ... 788

18.9.6.1.1 Method 1: Polyhydouracils by Cyclization of 2-(Methoxycarbonyl)ethyl-Substituted Polyureas .. 788

18.9.6.1.2 Method 2: Poly(quinazolinediones) from Aromatic Diisocyanates and Bisanthranilic Acids ... 789

18.9.7 Product Subclass 7: Urea–Formaldehyde Resins 790

18.9.7.1 Synthesis of Product Subclass 7 ... 791

18.9.7.1.1 Method 1: By Reaction of Urea with Formaldehyde 791

18.9.8 Product Subclass 8: Polyureas and Copolyureas 793

18.9.8.1 Synthesis of Product Subclass 8 ... 794

18.9.8.1.1 Method 1: By Polyaddition of Diamines and Diisocyanates 794

18.9.8.1.1.1 Variation 1: Hyperbranched Polymers from Diaminophenyl Isocyanate Monomers .. 797

18.9.8.1.2 Method 2: By Reaction of Diamines with Carbon Dioxide 798

18.9.8.1.2.1 Variation 1: By Reaction of Diamines with Phosgene 799

18.9.8.1.2.2 Variation 2: By Reaction of Diamines with Urea 800

18.9.8.1.2.3 Variation 3: By Reaction of Diamines with Dicarbonates 801

18.9.8.1.2.4 Variation 4: By Reaction of Diamines with Diurethanes 802
18.9.8.1.3 Method 3: By Reaction of Polysocyanates with Water 802
18.9.8.1.4 Method 4: By Cationic Ring-Opening Polymerization of Polycyclic Pseudoureas .. 803
18.9.8.1.5 Method 5: Poly(\(N',N'-\)diacylureas) by Polyaddition of Diamides to Bis(\(N\)-acyl isocyanates) ... 805
18.9.8.2 Applications of Product Subclass 8 in Organic Synthesis 806
18.9.8.2.1 Method 1: Hydrogenation and Hydrogen-Transfer Reduction 806
18.9.8.2.2 Method 2: Polyurea-Encapsulated Palladium as a Catalyst 807
18.9.9 Product Subclass 9: Short-Chain Oligomers .. 808
18.9.9.1 Synthesis of Product Subclass 9 ... 808
18.9.9.1.1 Method 1: N,N'-Linked Oligoureas: Sequential Reaction of 1-Substituted 2-Phthalimidoethyl Isocyanates ... 808
18.9.9.1.1.1 Variation 1: Sequential Reaction of Activated Carbamates Derived from Monoprotected Diamines ... 810
18.9.9.1.1.2 Variation 2: Sequential Reaction of \(N\)-(2-Nitrobenzenesulfonyl)-imidazolidinone ... 811
18.9.9.1.2 Method 2: Azatides: Sequential Reaction of Activated N-Protected N-Alkylhydrazines ... 812
18.10 Product Subclass 10: Organophosphorus Polymers 814
18.10.1 Synthesis of Product Subclass 10 ... 814
18.10.1.1 Method 1: Condensation Reaction between Diisocyanates and Substituted Phosphines and Phosphine Oxides 814

18.10 Product Class 10: Thiocarbonic Acids and Derivatives

S. Sato and N. Furukawa

18.10.1 Product Subclass 1: Thiocarbonyl Dihalides ... 821
18.10.1.1 Synthesis of Product Subclass 1 .. 821
18.10.1.1.1 Method 1: Synthesis of Thiocarbonyl Difluoride 821
18.10.1.1.2 Method 2: Synthesis of Thiophosgene 822
18.10.1.1.3 Method 3: Synthesis of Thiocarbonyl Dibromide 823
18.10.1.1.4 Method 4: Synthesis of Thiocarbonyl Diiodide 824
18.10.1.1.5 Method 5: Synthesis of Thiocarbonyl Chloride Fluoride 824
18.10.1.1.6 Method 6: Synthesis of Thiocarbonyl Bromide Fluoride 825
18.10.1.2 Applications of Product Subclass 1 in Organic Synthesis 825
18.10.2 Product Subclass 2: Dihalosulfines (Thiocarbonyl Dihalide S-Oxides) 826
18.10.2.1 Synthesis of Product Subclass 2 .. 826
18.10.2.1.1 Method 1: Synthesis of Difluorosulfine 826
18.10.2.1.2 Method 2: Synthesis of Dichlorosulfine 826
18.10.2.1.3 Method 3: Synthesis of Dibromosulfine 827
18.10.2.1.4 Method 4: Synthesis of Chlorofluorosulfine 827
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.10.3</td>
<td>Product Subclass 3: Halothioformate O-Esters</td>
<td>828</td>
</tr>
<tr>
<td></td>
<td>(Carbonohalothioate O-Esters)</td>
<td></td>
</tr>
<tr>
<td>18.10.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>829</td>
</tr>
<tr>
<td>18.10.3.1.1</td>
<td>Method 1: From Thiocarbonyl Dihalides and Alcohols and Phenols</td>
<td>829</td>
</tr>
<tr>
<td>18.10.3.1.2</td>
<td>Method 2: From Bis(alkoxythiocarbonyl) Disulfide and Sulfuryl Chloride or Chlorine</td>
<td>832</td>
</tr>
<tr>
<td>18.10.3.1.3</td>
<td>Methods 3: Miscellaneous Methods</td>
<td>833</td>
</tr>
<tr>
<td>18.10.3.2</td>
<td>Applications of Product Subclass 3 in Organic Synthesis</td>
<td>834</td>
</tr>
<tr>
<td>18.10.4</td>
<td>Product Subclass 4: Halodithioformates and Halothioselenoformate Se-Esters</td>
<td>834</td>
</tr>
<tr>
<td>18.10.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>835</td>
</tr>
<tr>
<td>18.10.4.1.1</td>
<td>Method 1: From Alkali Metal Chlorodithioformates and Alkyl Iodides</td>
<td>835</td>
</tr>
<tr>
<td>18.10.4.1.2</td>
<td>Method 2: Halogen Substitution of Thiocarbonyl Dihalides with Thiolates and Selenolates</td>
<td>836</td>
</tr>
<tr>
<td>18.10.4.1.3</td>
<td>Method 3: From Carbon Disulfide</td>
<td>838</td>
</tr>
<tr>
<td>18.10.4.1.4</td>
<td>Method 4: By Halogen Exchange</td>
<td>839</td>
</tr>
<tr>
<td>18.10.5</td>
<td>Product Subclass 5: Thiocarbonate O,O-Diesters</td>
<td>839</td>
</tr>
<tr>
<td>18.10.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>840</td>
</tr>
<tr>
<td>18.10.5.1.1</td>
<td>Method 1: From Thiophosgene and Alcohols and Phenols</td>
<td>840</td>
</tr>
<tr>
<td>18.10.5.1.1.1</td>
<td>Variation 1: Synthesis of Thiocarbonate O,O-Esters of Sugars</td>
<td>842</td>
</tr>
<tr>
<td>18.10.5.1.1.2</td>
<td>Variation 2: By Macrocyclization</td>
<td>844</td>
</tr>
<tr>
<td>18.10.5.1.2</td>
<td>Method 2: From Carbon Disulfide</td>
<td>845</td>
</tr>
<tr>
<td>18.10.5.1.3</td>
<td>Method 3: From Chlorothioformate O-Esters</td>
<td>846</td>
</tr>
<tr>
<td>18.10.5.1.4</td>
<td>Method 4: From 1,1′-Thiocarbonylbisdiazoles</td>
<td>849</td>
</tr>
<tr>
<td>18.10.5.1.4.1</td>
<td>Variation 1: Synthesis of Thiocarbonate O,O-Esters of Sugars and Nucleosides</td>
<td>852</td>
</tr>
<tr>
<td>18.10.5.1.5</td>
<td>Methods 5: Miscellaneous Methods</td>
<td>853</td>
</tr>
<tr>
<td>18.10.5.2</td>
<td>Applications of Product Subclass 5 in Organic Synthesis</td>
<td>854</td>
</tr>
<tr>
<td>18.10.5.2.1</td>
<td>Method 1: Intramolecular Elimination</td>
<td>855</td>
</tr>
<tr>
<td>18.10.5.2.2</td>
<td>Method 2: Application to Selected Organic Syntheses</td>
<td>856</td>
</tr>
<tr>
<td>18.10.6</td>
<td>Product Subclass 6: Dithiocarbonate O,S-Esters</td>
<td>858</td>
</tr>
<tr>
<td>18.10.6.1</td>
<td>Synthesis of Product Subclass 6</td>
<td>859</td>
</tr>
<tr>
<td>18.10.6.1.1</td>
<td>Method 1: From Carbon Disulfide, Alcohols, and Alkyl Halides</td>
<td>859</td>
</tr>
<tr>
<td>18.10.6.1.1.1</td>
<td>Variation 1: From Carbon Disulfide and Complex Hydroxy Compounds</td>
<td>861</td>
</tr>
<tr>
<td>18.10.6.1.1.2</td>
<td>Variation 2: Insertion Reactions of Carbon Disulfide</td>
<td>864</td>
</tr>
<tr>
<td>18.10.6.1.2</td>
<td>Method 2: From Sodium or Potassium O-Alkyl Dithiocarbonates, Alkyl Halides (or Sulfonates), and Arenediazonium Salts</td>
<td>865</td>
</tr>
<tr>
<td>18.10.6.1.2.2</td>
<td>Variation 2: Synthesis of Arenethiols By Diazotization of Aromatic Amines</td>
<td>867</td>
</tr>
<tr>
<td>18.10.6.1.3</td>
<td>Method 3: From Thiophosgene, Chlorothioformate O-Esters, Chlorodithioformates, or 1,1′-Thiocarbonyldimidazole</td>
<td>869</td>
</tr>
<tr>
<td>18.10.6.1.4</td>
<td>Method 4: From Organometallic Reagents and Sodium or Potassium O-Alkyl Dithiocarbonates</td>
<td>871</td>
</tr>
</tbody>
</table>
18.10.6.1.5 Method 5: Photochemical and Radical-Initiated Addition of Dithiocarbonates O,S-Esters to Terminal Alkenes

18.10.6.2 Applications of Product Subclass 6 in Organic Synthesis

18.10.7 Product Subclass 7: Thioisocyanates

18.10.7.1 Synthesis of Product Subclass 7

18.10.7.1.1 Method 1: From Carbon Disulfide and Hydrogen Sulfide or Thiols with Alkyl Halides

18.10.7.1.1.1 Variation 1: Cyclization of Oxiranes, Thiiranes, and Acetylenic Compounds with Carbon Disulfide

18.10.7.1.2 Variation 2: Poly-1,3-dithiole-2-thione

18.10.7.1.3 Method 2: From Salts of Thioisocyanic Acid and Monoesters of Thioisocyanic Acid

18.10.7.1.4 Method 3: From Thiophosgene or 1,1'-Thiocarbonyl diimidazole

18.10.7.1.5 Methods 5: Miscellaneous Methods

18.10.7.2 Applications of Product Subclass 7 in Organic Synthesis

18.10.7.2.1 Method 1: From 2-Thioxo-1,3-dithiole-4,5-dithiolate and Its Zinc Complex

18.10.8 Product Subclass 8: Thioureas

18.10.8.1 Synthesis of Product Subclass 8

18.10.8.1.1 Method 1: From Urea

18.10.8.1.2 Method 2: From Thiophosgene or Carbon Disulfide

18.10.8.1.3 Method 3: From Isothiocyanates

18.10.8.1.4 Method 4: From Chlorodithioformates

18.10.8.1.5 Method 5: From Carbodiimides

18.10.8.1.6 Method 6: From Thiocarbonyl Transfer Reagents

18.10.8.1.7 Methods 7: Miscellaneous Methods

18.10.9 Product Subclass 9: Thiosemicarbazides

18.10.9.1 Synthesis of Product Subclass 9

18.10.9.1.1 Method 1: Using Isothiocyanates and Hydrazine Derivatives

18.10.9.1.1.1 Variation 1: [3 + 2]-Cycloaddition Reactions

18.10.9.1.1.2 Variation 2: Intramolecular Cyclization Reactions

18.10.9.1.2 Method 2: From Compounds Containing the Thiocarbamoyl Moiety

18.10.9.1.3 Methods 3: Miscellaneous Methods

18.10.9.2 Applications of Product Subclass 9 in Organic Synthesis

18.10.9.2.1 Method 1: Cyclization of 1-Acylthiosemicarbazides

18.10.10 Product Subclass 10: Thiocarbonohydrazides

18.10.10.1 Synthesis of Product Subclass 10

18.10.10.1.1 Method 1: From Carbon Disulfide

18.10.10.1.2 Method 2: From Thiophosgene
18.10.11 **Product Subclass 11: Thiocarbamate O-Esters** .. 923

18.10.11.1 Synthesis of Product Subclass 11 .. 923

18.10.11.1.1 Method 1: From Isothiocyanates .. 923

18.10.11.1.2 Method 2: From Chlorothioformate O-Esters 926

18.10.11.1.3 Method 3: From N,N-Disubstituted Thiocarbamoyl Chlorides 928

18.10.11.1.4 Method 4: From 1,1’-Thiocarbonyldiimidazole and Related Compounds 931

18.10.11.1.5 Method 5: From Amino Alcohols and Carbon Disulfide and Related Methods 932

18.10.12 **Product Subclass 12: Dithiocarbamic Acid Esters** 933

18.10.12.1 Synthesis of Product Subclass 12 .. 934

18.10.12.1.1 Method 1: From Sodium Dithiocarbamates 934

18.10.12.1.2 Method 2: From Carbon Disulfide .. 937

18.10.12.1.3 Method 3: From Isothiocyanates ... 942

18.10.12.1.4 Method 4: From Thiocarbamoyl Chlorides 945

18.10.12.1.5 Method 5: From Thiuram Disulfides ... 946

18.10.13 **Product Subclass 13: Thiocarbamoyl Chlorides** 949

18.10.13.1 Synthesis of Product Subclass 13 .. 949

18.10.13.1.1 Method 1: From Thiophosgene and Primary or Secondary Amines 949

18.10.13.1.2 Method 2: From Thiuram Disulfides ... 950

18.10.13.1.3 Method 3: From Thioformamides .. 951

18.10.14 **Product Subclass 14: Phosphinecarbothioamides** 952

18.10.14.1 Synthesis of Product Subclass 14 .. 952

18.10.14.1.1 Method 1: From Isothiocyanates .. 952

18.10.14.1.2 Method 2: From Halothioamides .. 953

18.10.14.1.3 Method 3: Thiophosphorylidithioformate 954

18.10.14.1.4 Methods 4: Miscellaneous Methods ... 955

18.11 **Product Class 11: Seleno- and Tellurocarbonic Acids and Derivatives**

J. Schmidt and L. A. Silks

18.11 **Product Class 11: Seleno- and Tellurocarbonic Acids and Derivatives** 969

18.11.1 **Product Subclass 1: Selenocarbonyl Dihalides** 971

18.11.1.1 Synthesis of Product Subclass 1 .. 971

18.11.1.1.1 Method 1: Selenocarbonyl Difluoride from Bis(trifluoromethyl)mercury(II) 971

18.11.1.1.2 Method 2: Selenocarbonyl Difluoride from Trimethyl[(trifluoromethyl)selenyl]stannane 972

18.11.1.1.3 Method 3: Selenocarbonyl Difluoride by Controlled Decomposition of Tris[(trifluoromethyl)selenyl]borane .. 972

18.11.1.1.4 Method 4: Selenocarbonyl Dichloride by Vacuum Pyrolysis of 2,2,4,4-Tetrachloro-1,3-diselenetane 973
18.11.2 **Product Subclass 2: Selenocarbonates** ... 973

18.11.2.1 Synthesis of Product Subclass 2 .. 973

18.11.2.1.1 Method 1: From Viehe's Salt and Sodium Hydrogen Selenide 973

18.11.2.1.2 Method 2: Selenocarbonyls from the Reaction of Acetal Derivatives with Bis(dimethylaluminum) Selenide .. 974

18.11.2.1.3 Method 3: Selenocarbonates from Carbon Diselenide 975

18.11.2.1.4 Method 4: Selenocarbonates from Substitution Reactions with Sodium Hydrogen Selenide and Hydrogen Selenide 975

18.11.3 **Product Subclass 3: Selenocarbamates** ... 976

18.11.3.1 Synthesis of Product Subclass 3 ... 977

18.11.3.1.1 Method 1: Synthesis of Cyclic Selenocarbamates from Metalation Reactions .. 977

18.11.3.1.2 Method 2: From Addition Reactions to Isoselenocyanates 979

18.11.3.1.3 Method 3: By Addition of Alkoxides to Isoselenocyanates 979

18.11.3.1.4 Method 4: Substitution Reactions with Sodium Hydrogen Selenide or Hydrogen Selenide .. 980

18.11.3.1.5 Method 5: Addition of Carbon Diselenide to 1,2-Amino Alcohols 981

18.11.3.1.6 Method 6: From Lithium Aluminum Hydride Hydroselenide and Viehe’s Salt .. 982

18.11.3.1.7 Method 7: Te-Alkyl Selenotellurocarbamates from Organoselenocyanates .. 983

18.11.3.2 Applications of Product Subclass 3 in Organic Synthesis 984

18.11.3.2.1 Method 1: As an Analytical Tool for the Discrimination of Remotely Disposed Chiral Centers .. 984

18.11.3.2.2 Method 2: Stereoselective C—C Bond Formation via Chiral Selone Promoted Aldol Reactions .. 986

18.11.4 **Product Subclass 4: Selenosemicarbazides and Selenosemicarbazones** • 986

18.11.4.1 Synthesis of Product Subclass 4 .. 986

18.11.4.1.1 Method 1: Synthesis from Isoselenocyanates and Hydrazine 986

18.11.5 **Product Subclass 5: Selenoureas** .. 987

18.11.5.1 Synthesis of Product Subclass 5 .. 988

18.11.5.1.1 Method 1: From Metalation Reactions ... 988

18.11.5.1.2 Method 2: From Carbon Diselenide ... 989

18.11.5.1.3 Method 3: From Substitution Reactions with Sodium Hydrogen Selenide or Hydrogen Selenide .. 990

18.11.5.1.4 Method 4: From Addition Reactions to Isoselenocyanates 991

18.11.5.1.5 Method 5: From Carbene Reactions with Selenium 991

18.11.5.1.6 Method 6: From Addition of Potassium Selenocyanate to Primary Ammonium Salts or Amines .. 992

18.11.5.1.7 Method 7: From Cyanamide and Phosphorus Pentaselenide 993

18.11.5.1.8 Method 8: From the Woollins Reagent ... 993
Product Subclass 6: Phosphorus-Substituted Selenocarbonyl Derivatives

Synthesis of Product Subclass 6

Method 1: From Addition Reactions to Carbon Diselenide

Product Subclass 7: Tellurocarbonyl Dihalides

Synthesis of Product Subclass 7

Method 1: Tellurocarbonyl Dihalides from Trimethyl[(trifluoromethyl)tellanyl]stannane

Product Subclass 8: Telluroreas

Synthesis of Product Subclass 8

Method 1: Tellurocarbonyl Dihalides from Trimethyl[(trifluoromethyl)tellanyl]stannane

Product Subclass 9: Ditellurocarbonic and Ditellurocarbamic Acids and Their Metal Complexes

Synthesis of Product Subclass 9

Method 1: By the Uchida Method

Product Class 12: Imidic Acids and Derivatives, Isoureas and Derivatives, Sulfur and Selenium Equivalents, and Analogously Substituted Methyleneophosphines

Synthesis of Product Subclass 1

Method 1: From Glyoxylic Acid Derivatives and Halogens

Method 2: By Halogenation of Formanilides and Isocyanates

Method 3: By Halogenation of Isothiocyanates and Related Compounds

Variation 1: By Halogenation of Isothiocyanates

Variation 2: From Dithiocarbamates and Carbonimidodithioates

Variation 3: Dihaloiminium Salts from Dithiocarbamates and Dithiurams

Method 4: By Chlorination of N-Methylamides

Method 5: By Reactions Involving Dichlorocarbene

Method 6: From Tetrahalomethanes and Aromatic Amines

Method 7: From Trihalomethylamines by Elimination

Method 8: By Addition of Halogens to Isocyanides

Method 9: By Addition to Cyanogen Chloride

Method 10: From Other Carbonimidic Dihalides by Exchange of a Halogen Atom Bonded to Carbon

Method 11: From Other Carbonimidic Dihalides by Exchange or Modification of the Nitrogen Substituent
18.12.2 Applications of Product Subclass 1 in Organic Synthesis 1013

18.12.2 Product Subclass 2: Carbonohalidimidic Acid Derivatives 1014
18.12.2.1 Synthesis of Product Subclass 2 .. 1014
18.12.2.1.1 Method 1: From Carbonimidic Dihalides and Oxygen Nucleophiles 1014
18.12.2.1.2 Method 2: By Chlorination of Carbamates 1015
18.12.2.1.3 Method 3: By Addition to Aryl Cyanates 1015

18.12.3 Product Subclass 3: Carbonohalidimidothioates .. 1016
18.12.3.1 Synthesis of Product Subclass 3 .. 1016
18.12.3.1.1 Method 1: From Carbonimidic Dichlorides and Sulfur Nucleophiles 1016
18.12.3.1.2 Method 2: By Chlorination of Isothiocyanates and Related Compounds 1017
18.12.3.1.2.1 Variation 1: By the Addition of Chlorine to Isothiocyanates 1017
18.12.3.1.2.2 Variation 2: By Chlorination of Thiocarbamates and Dithiocarbamates 1018
18.12.3.1.2.3 Variation 3: From Carbonimidodithioates 1018
18.12.3.1.3 Method 3: By Addition of Sulfenyl Chlorides to Isocyanides 1019
18.12.3.1.4 Method 4: By Electrophilic Additions to Nitriles 1019
18.12.3.1.4.1 Variation 1: From Thiocyanates and Electrophiles 1019
18.12.3.1.4.2 Variation 2: From Sulfonyl Cyanides and Electrophiles 1020
18.12.3.2 Applications of Product Subclass 3 in Organic Synthesis 1020

18.12.4 Product Subclass 4: Carbamimidic Halides .. 1021
18.12.4.1 Synthesis of Product Subclass 4 .. 1021
18.12.4.1.1 Method 1: From Carbonimidic Dihalides and Amines 1021
18.12.4.1.2 Method 2: From Dichloroiminium Salts and Nitrogen Nucleophiles ... 1022
18.12.4.1.3 Method 3: By Chlorination of Ureas and Thioureas 1023
18.12.4.1.4 Method 4: By Addition of Acid Chlorides to Carbodiimides 1023
18.12.4.1.4.1 Variation 1: From Thiocyanates and Electrophiles 1023
18.12.4.1.5 Method 5: By Electrophilic Addition to Cyanamides 1024
18.12.4.1.6 Method 6: From Isocyanides and 1-Chlorobenzotriazole 1025

18.12.5 Product Subclass 5: Carbonimidic Halides Bearing a Phosphorus Substituent 1025
18.12.5.1 Synthesis of Product Subclass 5 .. 1025
18.12.5.1.1 Method 1: From (Dialkoxyphosphoryl)-α-haloacetaldehydes or from [Bis(dialkylamino)phosphoryl]-α-haloacetaldehydes by Diazocoupling or Nitrosation 1025
18.12.5.1.1.1 Variation 1: Arylhydrazones by Diazocoupling 1026
18.12.5.1.1.2 Variation 2: Oximes by Nitrosation .. 1026
18.12.5.1.2 Method 2: From Dihalo(dichlorophosphoryl)methyl Isocyanates and Alcohols 1027

18.12.6 Product Subclass 6: Carbonimidic Diesters .. 1028
18.12.6.1 Synthesis of Product Subclass 6 .. 1028
18.12.6.1.1 Method 1: From Carbonimidic Dihalides and Oxygen Nucleophiles 1028
18.12.6.1.2 Method 2: From Tetraethyl Orthocarbonate and Related Compounds with Amino Compounds 1029
18.12.6.1.3 Method 3: By the O-Alkylation of Carbamates 1029
18.12.6.1.4 Method 4: By the Addition of Alcohols to Cyanogen Halides and Cyanates ... 1030
18.12.6.1.5 Method 5: From Other Carbonimidate Esters by Substitution on Nitrogen .. 1031
18.12.7 **Product Subclass 7: Carbonimidothioate Diesters** .. 1031
18.12.7.1 Synthesis of Product Subclass 7 .. 1032
18.12.7.1.1 Method 1: From Carbonimidic Halides by Displacement of Halide Ion .. 1032
18.12.7.1.2 Method 2: By Nucleophilic Additions to Cyanates or Thiocyanates .. 1032
18.12.7.1.3 Method 3: By the S-Alkylation of O-Alkyl Thiocarbamates and Related Compounds 1033
18.12.7.1.3.1 Variation 1: By the S-Alkylation of O-Alkyl Thiocarbamates ... 1033
18.12.7.1.3.2 Variation 2: From Isothiocyanates, Alcohols, and Alkylating Agents .. 1034
18.12.7.1.4 Method 4: From Other Carbonimidothioates by Substitution on Nitrogen .. 1035
18.12.8 **Product Subclass 8: Carbonimidoselenoic Diesters** .. 1036
18.12.8.1 Synthesis of Product Subclass 8 .. 1036
18.12.9 **Product Subclass 9: Carbamimidic Esters (Isoureas)** ... 1037
18.12.9.1 Synthesis of Product Subclass 9 .. 1037
18.12.9.1.1 Method 1: From Carbamimidic Chlorides and Oxygen Nucleophiles .. 1037
18.12.9.1.2 Method 2: From Carbonimidic Diesters and Amines .. 1038
18.12.9.1.3 Method 3: By Addition of Alcohols to Carbodiimides .. 1039
18.12.9.1.4 Method 4: By Addition of Alcohols to Cyanamides .. 1039
18.12.9.1.5 Method 5: By Addition of Amines to Cyanates ... 1040
18.12.9.1.6 Method 6: By the O-Alkylation of Ureas .. 1040
18.12.9.1.7 Method 7: From Other Isoureas by Substitution on Nitrogen ... 1041
18.12.9.2 Applications of Product Subclass 9 in Organic Synthesis ... 1041
18.12.10 **Product Subclass 10: Imides with an Oxygen and a Phosphorus Substituent** .. 1041
18.12.10.1 Synthesis of Product Subclass 10 ... 1041
18.12.10.1.1 Method 1: By the Displacement of Halides from Imidoyl Halides by Oxygen Nucleophiles 1041
18.12.10.1.2 Method 2: From (Trimethylsiloxy)phosphorus(III) Compounds and Isocyanates ... 1042
18.12.11 **Product Subclass 11: Carbonimidodithioic Diesters** .. 1042
18.12.11.1 Synthesis of Product Subclass 11 .. 1042
18.12.11.1.1 Method 1: From Carbonimidic Halides and Sulfur Nucleophiles ... 1043
18.12.11.1.2 Method 2: By Addition of Thiols to Thiocyanates ... 1044
18.12.11.1.3 Method 3: By the Alkylation of Dithiocarbamates ... 1044
18.12.11.1.4 Method 4: From Other Carbonimidodithioates by Substitution on Nitrogen .. 1046
18.12.11.1.5 Method 5: Λ6-Sulfur Derivatives by S-Oxidation ... 1046
18.12.12 Product Subclass 12: Carbonimidodiselenoic Diesters .. 1047

18.12.12.1 Synthesis of Product Subclass 12 .. 1047

18.12.12.1.1 Method 1: 1,3-Thiaselenol-2-imines from 1,3-Thiaselenole-2-thiones and Azides 1047

18.12.12.1.2 Method 2: From Alkynethiolates or Alkyneselenolates .. 1047

18.12.13 Product Subclass 13: Carbamimidothioic Esters (Isothioureas) 1048

18.12.13.1 Synthesis of Product Subclass 13 .. 1048

18.12.13.1.1 Method 1: From Carbonimidic Halides by Nucleophilic Displacement of Halide Ion .. 1048

18.12.13.1.2 Method 2: From Carbonimidodithioate Diesters and Nitrogen Nucleophiles .. 1049

18.12.13.1.3 Method 3: By Addition of Thiols to Carbodiimides .. 1050

18.12.13.1.4 Method 4: By the S-Alkylation of Thioureas .. 1051

18.12.13.1.5 Method 5: By the Cycloaddition of Arenesulfonyle Isocyanates to Dithiocarbamates .. 1052

18.12.13.1.6 Method 6: From Other Isothioureas by N-Acylation .. 1052

18.12.14 Product Subclass 14: Imides with a Sulfur and a Phosphorus Substituent 1053

18.12.14.1 Synthesis of Product Subclass 14 .. 1053

18.12.14.1.1 Method 1: From Carbonimidic Halides by Nucleophilic Displacement of a Halide Ion 1053

18.12.14.1.2 Method 2: By Addition of Phosphorus Nucleophiles to Isothiocyanates and Related Procedures .. 1054

18.12.15 Product Subclass 15: Carbonimidodiselenoic Diesters .. 1055

18.12.15.1 Synthesis of Product Subclass 15 .. 1055

18.12.16 Product Subclass 16: Carbamimidothioic Esters (Isothioureas) 1056

18.12.16.1 Synthesis of Product Subclass 16 .. 1056

18.12.16.1.1 Method 1: Se-Alkylation of Selenoureas .. 1056

18.12.17 Product Subclass 17: (Dihalomethylene)phosphines (Dihalophosphaalkenes) .. 1057

18.12.17.1 Synthesis of Product Subclass 17 .. 1058

18.12.17.1.1 Method 1: From Di- and Trihalomethylphosphines by Elimination .. 1058

18.12.17.1.2 Variation 1: From Dichlorophosphines and Trihalomethanes .. 1059

18.12.17.1.3 Variation 2: From Dichlorophosphines and Tetrahalomethanes .. 1060

18.12.17.1.4 Variation 3: From Monosubstituted Phosphines and Tetrachloromethane .. 1060

18.12.17.1.5 Method 2: From Diaryldiphosphenes and Tetrahalomethanes .. 1061

18.12.17.2 Applications of Product Subclass 17 in Organic Synthesis 1061

18.12.18 Product Subclass 18: [Alkoxy(halo)methylene]phosphines [Alkoxy(halo)phosphaalkenes] .. 1061

18.12.18.1 Synthesis of Product Subclass 18 .. 1061

18.12.19.1 Synthesis of Product Subclass 19 .. 1062
Product Subclass 20: [Dialkylamino(halo)methylene]phosphines
[Dialkylamino(halo)phosphaalkenes] ... 1062

18.12.20.1 Synthesis of Product Subclass 20 .. 1063

Product Subclass 21: (Halomethylene)phosphines
[(Halo)phosphaalkenes] Bearing a Phosphorus Substituent 1063

18.12.21.1 Synthesis of Product Subclass 21 .. 1063

Product Subclass 22: Dioxymethylenephosphines
(Dialkoxyphosphaalkenes) .. 1064

18.12.22.1 Synthesis of Product Subclass 22 .. 1064

Product Subclass 23: [(Amino)(oxy)methylene]phosphines
[Alkoxy(amino)phosphaalkenes] .. 1065

18.12.23.1 Synthesis of Product Subclass 23 .. 1065

Product Subclass 24: Methylene phosphines (Phosphaalkenes) with
an Oxygen and a Phosphorus Substituent .. 1065

18.12.24.1 Synthesis of Product Subclass 24 .. 1065

Product Subclass 25: Disulfanylmethylenephosphines
(Disulfanylphosphaalkenes) .. 1066

18.12.25.1 Synthesis of Product Subclass 25 .. 1066

Product Class 13: Guanidine Derivatives
R. G. S. Berlinck, M. H. Kossuga, and A. M. Nascimento

18.13 Product Class 13: Guanidine Derivatives .. 1077

18.13.1 Product Subclass 1: Substituted Guanidines 1077

18.13.1.1 Synthesis of Product Subclass 1 .. 1078

18.13.1.1.1 Method 1: Reaction of Amines with Cyanamides 1078

18.13.1.1.1.1 Variation 1: Reaction of Amines with Cyanogen Bromide 1078

18.13.1.1.1.2 Variation 2: Reaction of Amines with Carbodiimides 1080

18.13.1.1.2 Method 2: Reaction of Amines with Substituted Thioureas 1083

18.13.1.1.2.1 Variation 1: Reaction of Amines with Acylthioureas 1087

18.13.1.1.2.2 Variation 2: Solid-Phase Reaction of Amines with Thioureas 1089

18.13.1.1.3 Method 3: Reaction of Amines with 2-Chloro-4,5-dihydro-1H-imidazol-3-ium Chlorides .. 1092

18.13.1.1.4 Method 4: Reaction of Amines with Chloroformimidamides 1093

18.13.1.1.5 Method 5: Reaction of Primary Amines with O-Methylisoureas 1094

18.13.1.1.6 Method 6: Reaction of Amines with 2-Methylisothioureas 1095

18.13.1.1.6.1 Variation 1: Solid-Phase Synthesis of Amines with Methylisothioureas .. 1097

18.13.1.1.7 Method 7: Reaction of Primary Amines with Alkylamino(imino)-methanesulfonic Acids .. 1099

18.13.1.1.8 Method 8: Reaction of Primary Amines with (Trifluoromethylsulfonyl)guanidines .. 1100
Method 9: Reaction of Primary Amines with $1H$-Pyrazole-1-carboximidamides .. 1101

Variation 1: Reaction of Amines with Di-$1H$-benzotriazol-1-ylmethanimines and with Di-$1H$-imidazol-1-ylmethanimine 1104

Method 10: Reaction of Guanidines with Alkyl and Aryl Halides 1105

Method 11: Reaction of Guanidines with Alcohols or Activated Alcohols 1106

Method 12: Addition of Guanidine to Aldehydes, Ketones, and Esters 1107
To Give Cyclic Guanidinium Salts ... 1107

Method 13: Addition of 2-Methylisoureas to Aldehydes and Ketones 1109

Method 14: Addition of Guanidine to α,β-Unsaturated Aldehydes, Ketones, and Esters ... 1110

Product Class 14: Phosphorus Analogues of Guanidine

T. L. Gilchrist

Product Subclass 1: Imines with One Nitrogen and One Phosphorus Substituent ... 1117

Synthesis of Product Subclass 1 ... 1117

Method 1: Substitution of Hydrogen on Imines 1117

Method 2: Displacement of a Halogen from Phosphorus-Substituted Imidoyl Halides by Nitrogen ... 1118

Method 3: Displacement of Chlorine from a Chloroformamidinium Salt by Phosphorus ... 1119

Method 4: Addition of Phosphorus Compounds to Carbodiimides 1120

Variation 1: Addition of Phosphines 1120

Variation 2: Addition of Phosphites and Related Compounds 1121

Method 5: Addition to Isocyanates 1121

Product Subclass 2: Imines with Two Phosphorus Substituents 1122

Synthesis of Product Subclass 2 .. 1122

Method 1: Displacement of Chlorine from Carbonimidic Dichlorides by Phosphorus ... 1122

Product Subclass 3: Alkylidene phosphines with Two Nitrogen Substituents ... 1123

Synthesis of Product Subclass 3 .. 1123

Method 1: Elimination of Cyanide from Dicyanophosphines 1124

Method 2: Addition of Phosphines to Bis(dialkylamino)difluoromethanes ... 1124

Method 3: Addition of Phosphines to Tetramethylisouronium and Tetramethylisothiouronium Salts ... 1124

Method 4: Addition of Phosphines to Bis(dialkylamino)carbenes 1125

Method 5: Exchange of Substituents on Phosphorus 1126
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.14.4</td>
<td>Product Subclass 4: Alkylidenephosphines with One Nitrogen and One Phosphorus Substituent</td>
<td>1127</td>
</tr>
<tr>
<td>18.14.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>1127</td>
</tr>
<tr>
<td>18.14.4.1.1</td>
<td>Method 1: Substitution of Carbonimidic Dichlorides Using Bis(trimethylsilyl)phosphines</td>
<td>1127</td>
</tr>
<tr>
<td>18.14.4.1.2</td>
<td>Method 2: Addition Reactions of Alkylidyne phosphines</td>
<td>1128</td>
</tr>
<tr>
<td>18.14.4.1.3</td>
<td>Method 3: Rearrangement Reactions</td>
<td>1129</td>
</tr>
<tr>
<td>18.14.5</td>
<td>Product Subclass 5: Alkylidenephosphines with Two Phosphorus Substituents</td>
<td>1130</td>
</tr>
<tr>
<td>18.14.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>1130</td>
</tr>
<tr>
<td>18.15</td>
<td>Product Class 15: Tetraheterosubstituted Methanes with a Carbon—Halogen Bond</td>
<td>1135</td>
</tr>
<tr>
<td>18.15</td>
<td>A. Y. Il’chenko</td>
<td></td>
</tr>
<tr>
<td>18.15.1</td>
<td>Product Class 15: Tetraheterosubstituted Methanes with a Carbon—Halogen Bond</td>
<td>1135</td>
</tr>
<tr>
<td>18.15.1.1</td>
<td>Product Subclass 1: Tetrahalomethanes</td>
<td>1136</td>
</tr>
<tr>
<td>18.15.1.1.1</td>
<td>Synthesis of Product Subclass 1</td>
<td>1136</td>
</tr>
<tr>
<td>18.15.1.1.2</td>
<td>Method 1: Carbon Tetrafluoride</td>
<td>1136</td>
</tr>
<tr>
<td>18.15.1.1.3</td>
<td>Method 2: Chlorotrifluoromethane, Bromotrifluoromethane, and Trifluoriodomethane</td>
<td>1137</td>
</tr>
<tr>
<td>18.15.1.1.4</td>
<td>Method 3: Tetrahalomethanes Containing Zero to Two Fluorides</td>
<td>1138</td>
</tr>
<tr>
<td>18.15.1.2</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>1140</td>
</tr>
<tr>
<td>18.15.1.2.1</td>
<td>Method 1: (Trifluoromethyl)metal Reagents</td>
<td>1140</td>
</tr>
<tr>
<td>18.15.1.2.2</td>
<td>Method 2: Addition to Alkenes and Alkynes</td>
<td>1141</td>
</tr>
<tr>
<td>18.15.1.2.3</td>
<td>Method 3: Trifluoromethylation of Arenes and Hetarenes</td>
<td>1142</td>
</tr>
<tr>
<td>18.15.1.2.4</td>
<td>Method 4: Synthesis of Trimethyl(trifluoromethyl)silane (Ruppert’s Reagent)</td>
<td>1143</td>
</tr>
<tr>
<td>18.15.2</td>
<td>Product Subclass 2: Compounds with Carbon—Halogen and Carbon—Oxygen Bonds</td>
<td>1144</td>
</tr>
<tr>
<td>18.15.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>1145</td>
</tr>
<tr>
<td>18.15.2.1.1</td>
<td>Method 1: Trichloromethoxy Derivatives</td>
<td>1145</td>
</tr>
<tr>
<td>18.15.2.1.2</td>
<td>Method 2: (Trifluoromethoxy)benzenes from the Corresponding (Trichloromethoxy)benzenes</td>
<td>1145</td>
</tr>
<tr>
<td>18.15.2.1.3</td>
<td>Method 3: Trifluoromethoxy Derivatives from the Corresponding Alcohols</td>
<td>1146</td>
</tr>
<tr>
<td>18.15.2.1.4</td>
<td>Method 4: Trifluoromethyl Hypofluorite, Trifluoromethyl Hypochlorite, and Difluoromethylene Dihypofluorite</td>
<td>1147</td>
</tr>
<tr>
<td>18.15.2.1.5</td>
<td>Method 5: Trifluoromethyl Peroxides</td>
<td>1148</td>
</tr>
<tr>
<td>18.15.2.2</td>
<td>Applications of Product Subclass 2 in Organic Synthesis</td>
<td>1148</td>
</tr>
<tr>
<td>18.15.2.2.1</td>
<td>Method 1: Addition of Trifluoromethyl Hypofluorite or Hypochlorite or Chloroperoxytrifluoromethane to Alkenes and Alkynes</td>
<td>1148</td>
</tr>
</tbody>
</table>
18.15.2.2 Method 2: Fluorination by Trifluoromethyl Hypofluorite and Hypochlorite

18.15.3 Product Subclass 3: Compounds with Carbon—Halogen and Carbon—Sulfur Bonds

18.15.3.1 Synthesis of Product Subclass 3

18.15.3.1.1 Method 1: Trifluoromethanethiol from Bis(trifluoromethylsulfanyl)-mercury(II) and Hydrogen Chloride or Bis(trifluoromethyl) Disulfide and Hydrogen Sulfide

18.15.3.1.2 Method 2: Trifluoromethyl Sulfides from the Corresponding Trichloromethyl Sulfides and Antimony(III) Fluoride

18.15.3.1.3 Method 3: Trichloromethyl Sulfides by Chlorination of the Corresponding Methyl Sulfides

18.15.3.1.4 Method 4: Phenyl Trihalomethyl Sulfides by Trihalomethylation of Benzenethiols or Benzenethiolates

18.15.3.1.5 Method 5: Aryl or Methyl Trifluoromethyl Sulfides by Cross-Coupling Reactions between Iodoarenes or Iodomethane and (Trifluoromethylsulfanyl)metal Reagents

18.15.3.1.6 Method 6: Bis-, Tris-, and Tetrakis(trifluoromethylsulfanyl)methanes and Halotris(trifluoromethylsulfanyl)methanes

18.15.3.1.7 Method 7: Trifluoro- and Trichloromethanesulfenyl Halides

18.15.3.1.8 Method 8: Mono- and Bis(trifluoromethylsulfanyl)amines from Trifluoromethanesulfenyl Chloride and Ammonia

18.15.3.1.9 Method 9: Bis(trifluoromethyl) Sulfide, Disulfide, and Trisulfide

18.15.3.1.10 Method 10: (Trifluoromethyl)sulfur Trifluoride, Bis(trifluoromethyl)sulfur Difluoride, and Difluorobis(trifluoro-\(\lambda^4\)-sulfanyl)methane

18.15.3.1.11 Method 11: Trifluoromethanesulfinyl Fluoride and Chloride and Difluoromethanedisulfenyl Fluoride

18.15.3.1.12 Method 12: Trifluoromethyl Sulfoxides

18.15.3.1.13 Method 13: (Trifluoromethyl)sulfur Pentfluoride and (Trifluoromethyl)sulfur Chloride Tetrafluoride

18.15.3.1.14 Method 14: Trifluoromethanesulfonic Acid, Metal Trifluoromethanesulfinates, and Difluoromethanedisulfinic Acid

18.15.3.1.15 Method 15: Trifluoromethanesulfonyl Fluoride from Alkanesulfonic Acid Halides or Esters

18.15.3.1.16 Method 16: Difluorohalomethanesulfonyl Fluorides by Photolytic Decarbonylation of the Corresponding Difluoro(halocarbonyl)methanesulfonyl Fluorides

18.15.3.1.17 Method 17: Dihalomethanedisulfonfyl Difluorides by Halogenation of Methanedisulfonfyl Difluoride

18.15.3.1.18 Method 18: Halomethanethiosulfonfyl Trifluorides from Methanethiosulfonfyl Trifluoride

18.15.3.1.19 Method 19: Trifluoromethanesulfonyl Chloride

18.15.3.1.20 Method 20: Trichloromethanesulfonyl Chloride by Oxidation of Trichloromethanesulfenyl Chloride

18.15.3.1.21 Method 21: Trifluoromethyl Trifluoromethanethiosulfonate from Trifluoromethanesulfonic Anhydride
Method 22: Methyl Trifluoromethanesulfonate from Trifluoromethanesulfonic Acid and Dimethyl Sulfate

Method 23: Phenyl Trifluoromethanesulfonate from Trifluoromethanesulfonic Acid and Trifluoromethanesulfonyl Fluoride

Method 24: Trifluoromethanesulfonic Acid

Method 25: Chlorodifluoromethanesulfonic Acid and Trichloromethanesulfonic Acid

Method 26: Trifluoromethanesulfonic Anhydride from Trifluoromethanesulfonic Acid and Phosphorus Pentoxide

Method 27: Trifluoromethyl Sulfones

Method 28: Esters of Trifluoromethanethiosulfonic Acid or Trifluoromethaneselenosulfonic Acid from Metal Trifluoromethanesulfinates and Sulfenyl or Selenenyl Chlorides

Method 29: Difluorohalomethanesulfonamides and Difluorohalomethanesulfonamides

Applications of Product Subclass 3 in Organic Synthesis

Method 1: Addition of Trifluoromethanethiol or Trifluoromethanesulfonyl Fluoride or Chloride to Alkenes and Alkynes

Method 2: Applications of Trifluoromethanesulfonic Acid

Method 3: Applications of Alkyl Trifluoromethanesulfonates and Trifluoromethanesulfonic Anhydride

Method 4: An N-(Trifluoromethylsulfonyl)sulfimide from N,N-Dichlorotrifluoromethanesulfonamide and (Trifluoromethylsulfanyl)-benzene

Product Subclass 4: Compounds with Carbon—Halogen and Carbon—Selenium Bonds

Synthesis of Product Subclass 4

Method 1: Selenium(II) Compounds

Method 2: Selenium(IV) Compounds

Method 3: Selenium(VI) Compounds

Applications of Product Subclass 4 in Organic Synthesis

Method 1: Addition of Trifluoromethaneselenyl Chloride to Ethene

Product Subclass 5: Compounds with Carbon—Halogen and Carbon—Tellurium Bonds

Synthesis of Product Subclass 5

Method 1: Bis(trifluoromethyl) Telluride, Bis(trifluoromethyl)tellurium Dihalides, and Tetrakis(trifluoromethyl)-λ₄-tellane

Applications of Product Subclass 5 in Organic Synthesis

Method 1: Trifluoromethylations Using Bis(trifluoromethyl) Telluride

Product Subclass 6: Compounds with Carbon—Halogen and Carbon—Nitrogen Bonds

Synthesis of Product Subclass 6
18.15.6.1 Method 1: Mono-, Bis-, and Tris(trifluoromethyl)amine
18.15.6.2 Method 2: Dimethyl(trifluoromethyl)amine from Dimethylformamide and Sulfur Tetrafluoride
18.15.6.3 Method 3: N-(Trihalomethyl)anilines
18.15.6.4 Method 4: Dichloro- and Difluoro(trifluoromethyl)amine
18.15.6.5 Method 5: (Trifluoromethyl)imidosulfurous Difluoride from Cyanuric Fluoride and Sulfur Tetrafluoride
18.15.6.6 Method 6: (Difluoromethylene)(trifluoromethyl)amine from Trifluoro(nitroso)methane and Tetrafluoroethene
18.15.6.7 Method 7: Trifluoro(nitroso)methane, N,N-Bis(trifluoromethyl)hydroxylamine, and the Bis(trifluoromethyl)nitroxide Radical
18.15.6.8 Method 8: Trifluoro(nitro)methane, Difluorodinitromethane, and Fluorotrinitromethane
18.15.6.9 Applications of Product Subclass 6 in Organic Synthesis
18.15.7 Product Subclass 7: Compounds with Carbon—Halogen and Carbon—Phosphorus Bonds
18.15.7.1 Synthesis of Product Subclass 7
18.15.7.2 Applications of Product Subclass 7 in Organic Synthesis
18.16 Product Class 16: Other Tetraheterosubstituted Methanes
C. M. Diaper
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.16.1.2</td>
<td>Method 2: Substitution Reactions of Dichloroacetals</td>
<td>1205</td>
</tr>
<tr>
<td>18.16.1.3</td>
<td>Method 3: Metal-Mediated Desulfurization of Carbon Disulfide with Alkoxides or Alcohols</td>
<td>1205</td>
</tr>
<tr>
<td>18.16.1.4</td>
<td>Method 4: Spiro Orthocarbonates from Epoxides and Cyclic Carbonates by Addition</td>
<td>1206</td>
</tr>
<tr>
<td>18.16.1.5</td>
<td>Method 5: Transesterification of Orthocarbonic Acid Tetraesters with Alcohols</td>
<td>1207</td>
</tr>
<tr>
<td>18.16.1.6</td>
<td>Applications of Product Subclass 1 in Organic Synthesis</td>
<td>1208</td>
</tr>
<tr>
<td>18.16.1.6.1</td>
<td>Method 1: Generation of Trialkoxycarbenium Salts</td>
<td>1208</td>
</tr>
<tr>
<td>18.16.1.6.2</td>
<td>Method 2: Alkylation Reactions</td>
<td>1208</td>
</tr>
<tr>
<td>18.16.1.6.3</td>
<td>Method 3: Protecting Group Chemistry</td>
<td>1210</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.16.2</td>
<td>Product Subclass 2: Thioorthocarbonic Acid Tetraesters [Trialkoxy(alkylsulfanyl)methanes]</td>
<td>1211</td>
</tr>
<tr>
<td>18.16.2.1</td>
<td>Synthesis of Product Subclass 2</td>
<td>1211</td>
</tr>
<tr>
<td>18.16.2.1.1</td>
<td>Method 1: Substitution Reaction of Dichloroacetals with 2-Sulfanylethanol</td>
<td>1211</td>
</tr>
<tr>
<td>18.16.2.1.2</td>
<td>Method 2: Nucleophilic Addition of Alcohols to 0,0-Dialkyl Thiocarbonates</td>
<td>1212</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.16.3</td>
<td>Product Subclass 3: Orthocarbamic Acid Triesters</td>
<td>1212</td>
</tr>
<tr>
<td>18.16.3.1</td>
<td>Synthesis of Product Subclass 3</td>
<td>1213</td>
</tr>
<tr>
<td>18.16.3.1.1</td>
<td>Method 1: Addition of Alkoxides to Dialkoxyaminocarbenium and Chloroformamidinium Salts</td>
<td>1214</td>
</tr>
<tr>
<td>18.16.3.1.2</td>
<td>Method 2: 2,5-Dihydro-1,3,4-oxadiazoles from Ketone Hydrazones by Oxidative Cyclization</td>
<td>1215</td>
</tr>
<tr>
<td>18.16.3.1.3</td>
<td>Method 3: 2,2-Diaryloxy- and 2,2-Dialkoxydihydrooxadiazoles from 2-Acetoxy-2-aryloxydihydrooxadiazoles</td>
<td>1215</td>
</tr>
<tr>
<td>18.16.3.2</td>
<td>Applications of Product Subclass 3 in Organic Synthesis</td>
<td>1216</td>
</tr>
<tr>
<td>18.16.3.2.1</td>
<td>Method 1: Dihydrooxadiazoles as Precursors of Dialkoxycarbenes</td>
<td>1216</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.16.4</td>
<td>Product Subclass 4: Trialkoxy(phosphino)methanes and Trialkoxy(phosphoryl)methanes</td>
<td>1217</td>
</tr>
<tr>
<td>18.16.4.1</td>
<td>Synthesis of Product Subclass 4</td>
<td>1217</td>
</tr>
<tr>
<td>18.16.4.1.1</td>
<td>Method 1: Addition to Trialkoxycarbenium Salts</td>
<td>1217</td>
</tr>
<tr>
<td>18.16.4.1.1.1</td>
<td>Variation 1: Trialkoxy(phosphoryl)methanes by Addition of Sodium Dialkyl Phosphites</td>
<td>1217</td>
</tr>
<tr>
<td>18.16.4.1.1.2</td>
<td>Variation 2: Trialkoxy(phosphino)methanes by Addition of Lithium Dialkylphosphides</td>
<td>1218</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.16.5</td>
<td>Product Subclass 5: Dithioorthocarbonic Acid Tetraesters [Dialkoxybis(alkylsulfanyl)methanes]</td>
<td>1218</td>
</tr>
<tr>
<td>18.16.5.1</td>
<td>Synthesis of Product Subclass 5</td>
<td>1218</td>
</tr>
<tr>
<td>18.16.5.1.1</td>
<td>Method 1: Substitution Reactions of Dihaloacetals and Dihalothioacetals</td>
<td>1219</td>
</tr>
<tr>
<td>18.16.5.1.2</td>
<td>Method 2: Transesterification of Orthocarbonates with Dithiols</td>
<td>1219</td>
</tr>
</tbody>
</table>
Product Subclass 6: Orthocarbonic Acid Diester Diamides

Dialkoxydiaminomethanes .. 1220

Method 1: Substitution Reactions of Halomethanes 1222

Variation 1: Substitution Reactions of 3-Alkoxy-3-chlorodiazirines with Alkoxides .. 1222

Variation 2: Unsymmetrical Dioxadiazipaspirans by Substitution Reactions of 2,2-Dihaloacetals with Amines 1222

Method 2: Symmetrical Dioxadiazipaspirans by Desulfurization of Carbon Disulfide or N-Alkylthiocarbamates with Amino Alcohols 1223

Method 3: Addition of Alkoxides to Uronium and Formamidinium Salts 1224

Method 4: Oxidation of Dihydroimidazole N-Oxides 1225

Method 5: Oxidation of Acetone Semicarbazones 1225

Method 6: Symmetrical Dioxadiazipaspirans from Dialkylcarbodiimides . 1226

Applications of Product Subclass 6 in Organic Synthesis 1227

Dialkoxydiazirines and Amino(oxy)dihydrooxazoles as Dialkoxy carbene Precursors .. 1227

Product Subclass 7: Dialkoxybis(phosphino)methanes and Dialkoxybis(phosphoryl)methanes .. 1228

Method 1: Substitution Reactions of Dichloroacetals with Trialkyl Phosphites .. 1229

Method 2: Hydrates of Carbonyldiphosphonates 1230

Product Subclass 8: Trithioorthocarbonic Acid Tetraesters

[Alkoxytris(organosulfanyl)methanes] 1230

Method 1: Addition of Alkoxide to Sulfanylcarbenium Salts 1231

Method 2: Cycloaddition of Thiocarbonyl Compounds 1231

Method 3: Oxatrithiaspirans by Addition of Epoxides to 1,3-Dithiolane-2-thiones .. 1232

Method 4: Thermal Decomposition of Bisdithiocarbonates 1233

Product Subclass 9: Alkoxytriaminomethanes and Alkoxytrinitromethanes .. 1234

Method 1: Addition of Alkoxides to Hexaalkylguanidinium Chlorides ... 1235

Method 2: Heterocyclic Derivatives by Cycloaddition Reactions 1236

Product Subclass 10: Tetrathioorthocarbonic Acid Tetraesters

[Tetrakis(organosulfanyl)methanes], Bis(organosulfanyl)bis(organosulfinyl)methanes, Tris(organosulfanyl)(organosulfonyl)methanes, and Bis(organosulfanyl)bis(organosulfonyl)methanes 1237

Synthesis of Product Subclass 10 ... 1238

Method 1: Substitution Reactions of Halomethanes with Thiolates 1238
18.16.10.1.2 Method 2: Substitution Reactions of Tris(organosulfanyl)methylithium Compounds and Bis(organosulfanyl)methanes 1239

18.16.10.1.2.1 Variation 1: Substitution Reactions of Tris(organosulfanyl)methylithium Compounds with Diorgano Disulfides 1240

18.16.10.1.2.2 Variation 2: Reaction of Bis(alkylsulfanyl)methanes with N-(Organosulfanyl)phthalimides 1240

18.16.10.1.3 Method 3: Addition of Thiols to Sulfanylcarbenium Salts 1241

18.16.10.1.4 Method 4: Tetrathiaspirans from Dithiolane-2-thione or Carbon Disulfide by Addition Reactions 1242

18.16.10.1.5 Method 5: Transesterification of Tetrathioorthocarboxylic Acid Tetraesters with Dithiols 1243

18.16.11 Product Subclass 11: Trithioorthocarboxylic Triesters [Aminotris(organosulfanyl)methanes] and Nitrotris(organosulfanyl)methanes 1243

18.16.11.1 Synthesis of Product Subclass 11 ... 1244

18.16.11.1.1 Method 1: Addition of Thiolates to Carbamidium Salts and Amines to Sulfanylcarbenium Salts 1245

18.16.11.1.2 Method 2: Nitration of Tris(organosulfanyl)methanes 1246

18.16.12 Product Subclass 12: Tris(alkylsulfanyl)phosphorylmethanes 1247

18.16.12.1 Synthesis of Product Subclass 12 ... 1247

18.16.12.1.1 Method 1: Reaction of Phosphoryldithioformates with Organometallics 1247

18.16.13 Product Subclass 13: Dithioorthocarboxylic Acid Diamide Diesters [Diaminobis(organosulfanyl)methanes] and Bis(arylsulfanyl)-dinitromethanes 1248

18.16.13.1 Synthesis of Product Subclass 13 ... 1249

18.16.13.1.1 Method 1: Substitution Reactions of 2,2-Dichloroimidazolidine-4,5-diones with Organothiols 1250

18.16.13.1.2 Method 2: Ring Closure of Iminodithiocarbonates and Thioureas 1250

18.16.13.1.3 Method 3: Cycloaddition of Thiocarbonyl Compounds with Nitrilimines 1251

18.16.13.1.4 Method 4: Reaction of Sulfenyl Halides with Dinitro Ylides 1252

18.16.13.1.5 Method 5: From Heterocyclic Aminals 1253

18.16.14 Product Subclass 14: Bis(alkylsulfanyl)- and Bis(alkylselanyl)-bis(phosphino)methanes and -bis(phosphoryl)methanes 1254

18.16.14.1 Synthesis of Product Subclass 14 ... 1254

18.16.14.1.1 Method 1: Reaction of Metalated Phosphines or Phosphorines with Carbon Disulfide 1254

18.16.14.1.2 Method 2: Dimerization of Bis(alkylsulfanyl)methylene]phosphines 1255

18.16.14.1.3 Method 3: Sulfenation of Bis(phosphoryl)methanes 1256

18.16.15 Product Subclass 15: Thio- and Selenoorthocarboxylic Acid Triamide Esters [Triamino(organosulfanyl)- and Triamino(organoselanyl)methanes] and Trinitro(organosulfanyl)- and Trinitro(organoselanyl)methanes 1257

18.16.15.1 Synthesis of Product Subclass 15 ... 1257

18.16.15.1.1 Method 1: Addition of Amines to Thioureas or Isothioureas 1257
18.16.15.1.2 Method 2: Cycloaddition of Thioureas and Isothioureas with Isocyanates .. 1258
18.16.15.1.3 Method 3: Substitution Reactions of Metalated Methanes with Sulfenyl and Selenenyl Halides .. 1260
18.16.16 Product Subclass 16: Tetraselenoorthocarbonic Acid Tetraesters
[Tetrakis(alkylselanyl)methanes] .. 1261
18.16.16.1 Synthesis of Product Subclass 16 .. 1261
18.16.16.1.1 Method 1: Substitution Reactions of [Tris(organoselanyl)methyl]lithium Reagents with Diorganodiselenenyl Compounds 1261
18.16.17 Product Subclass 17: Orthocarbonic Acid Tetraamides
[Tetrakis(dialkylamino)methanes] and Tetranitromethane 1262
18.16.17.1 Synthesis of Product Subclass 17 .. 1263
18.16.17.1.1 Method 1: Substitution of Halomethanes with Amines 1263
18.16.17.1.2 Method 2: Tetrakis(dialkylamino)methanes from Formamidine Salts by Addition of Metalated Dialkylamines 1265
18.16.17.1.3 Method 3: Tetraaminomethanes from Cycloaddition Reactions 1265
18.16.17.1.4 Method 4: Tetranitromethane from Trinitromethane Derivatives by Nitrination .. 1266
18.16.17.2 Applications of Product Subclass 17 in Organic Synthesis 1267
18.16.17.2.1 Method 1: Nitrations using Tetranitromethane 1267
18.16.18 Product Subclass 18: Aminotris(phosphoryl)methanes 1268
18.16.18.1 Synthesis of Product Subclass 18 .. 1269
18.16.18.1.1 Method 1: Substitution Reactions of (Trihalomethyl)amines with Trialkyl Phosphites ... 1269
18.16.19 Product Subclass 19: Tetrakis(phosphanyl)methanes,
Tetrakis(phosphinoyl)methanes, and Tetrakis(phosphoryl)methanes 1270
18.16.19.1 Synthesis of Product Subclass 19 .. 1271
18.16.19.1.1 Method 1: Reactions of Carbon Tetrachloride 1271
18.16.19.1.1.1 Variation 1: With Chlorodimethylphosphine 1271
18.16.19.1.2 Variation 2: By [2 + 1] Cyclocondensation with Dipotassium 1,2-Di-tert-butylphosphide .. 1271

Keyword Index ... 1283
Author Index .. 1335
Abbreviations ... 1399